 �

 DESIGN

	SPECIFICATIONS

�
CONTENTS

Chapter	1	Introduction						P

		1.1	Introduction						p

Chapter	2	Requirements Definition				p

		2.1	Requirements Definition				p

		2.2	System Model						p

		2.3	System Evolution					p

		

Chapter	3	Design Specifications				p

		3.1	The User Interface					p

		3.2	3D Objects						p

		3.3	3D Animations						p

		3.4	File Formats						p

�
							 CHAPTER 1

						INTRODUCTION

w OBJECTIVES

	This chapter will tell you more about the Design 	Specifications documentation.

w CONTENTS

	1.1	Introduction

�
1.1	Introduction

This documentation explains the design of the Citigrade 3D Editor.

It gives a requirements definition of what the program should be able to do, as well as a detailed design of the program.

Algorithms for the basic functions of the program are given.

�
							 CHAPTER 2

		 REQUIREMENTS DEFINITION

w OBJECTIVES

	This chapter will tell you more about what this system is 	expected to do and how it does it.

w CONTENTS

	2.1	Requirements Definition

	2.2	System Model

	2.3	System Evolution

�
2.1	Requirements Definition

Being a tool for designing and editing 3D objects, the Citigrade 3D Editor should meet the following requirements:

Constructing and Designing a 3D Object:

wInsert/Delete Points

wInsert/Delete Faces

wSet the Face Type

Editing a 3D Object:

wEdit a Point’s position

wEdit a Face’s Type

wMove a object to another position

wAdd objects together

Animating a 3D Object:

wCreate animation sequences with a 3D Object

General Requirements:

wSave/Load objects

wView objects

�
2.2	System Model

The system consists of three major components. A User Interface, a 3D Object Instance and a 3D Animation Instance.

The following is a structured diagram that explains how the three major components of the program “communicate” with one another by showing the flow of data.

�

2.2.1	 User Interface

Algorithm for UserInterface:

1.	DO WHILE NOT Quit Program

	1.1	DoMouseControl

	1.2	Check any keyboard interactions

Algorithm for DoMouseControl:

1.	Determine the 2D edit zone for current Z-Plane

2.	IF mouse coordinates within the 2D edit zone THEN

	1.	IF Insert New Face THEN

		1.	Transform the 2D mouse coordinates to 3D coordinates

		2.	Use GetPoint to determine if the point clicked on exists

		3.	IF point exist THEN

			1.	Highlight the new face in the Construction Window

			2.	Add the point to a temporary face

			3.	IF the temporary face has 4 vertices THEN

				1.	Use EditFace to set the face’s information

				2.	Add the temporary face to the 3D Object

				3.	Switch back to Point mode

				4.	Clear the temporary face

		ELSE

	2.	IF Delete Face THEN

		1.	DeleteFace

		ELSE

	3.	IF Insert New Point THEN

		1.	InsertPoint

		ELSE

	4.	IF Delete Point THEN

		1.	DeletePoint

	ELSE

	1.	DoButton

Algorithm for GetPoint:

1.	Search for matching point in current Z-plane

	1.	FOR cnt=0 TO NumberOfPoints-1 DO

		1.	IF 3D Object’s point(cnt) = point

			1.	cur_point = cnt

			2.	RETURN TRUE

2.	Search for matching point in all the Z-planes

	1.	FOR cnt=0 TO NumberOfPoints-1 DO

		1.	FOR zplane=ZMIN TO ZMAX DO

		2.	IF there is any point in the Z-Plane=zplane THEN

			1.	Transform mouse 2D coordinates to 3D coordinates 				using Z-Plane = zplane

			2.	IF 3D Object’s point(cnt)=transformed point THEN

				1.	cur_point = cnt

				2.	RETURN TRUE

3. RETURN FALSE

Algorithm for DeleteFace:

1.	FaceNr = 0

2.	DO WHILE NOT Finished

	1.	Highlight 3D Object’s face (FaceNr)

	2.	IF the PLUS key was pressed THEN

		1.	Increase FaceNr

		ELSE

		2.	IF the MINUS keys was pressed THEN

			1.	Decrease FaceNr

			ELSE

			1.	IF the ESC key was pressed THEN

				1.	Finished = TRUE

	3.	IF the mouse cursor was clicked on the “Delete This Face” 			button THEN

		1.	Delete 3D Object’s face (FaceNr)

�
Algorithm for InsertPoint:

1.	Use GetPoint to determine if the point clicked on exists

2.	IF the point does not exist THEN

	1.	Add the point to the 3D Object

	ELSE

	1.	IF mouse cursor is being dragged THEN

		1.	DO WHILE mouse button NOT released

			1.	Change the selected point’s coordinates to the 					current mouse coordinates

Algorithm for DeletePoint:

1.	Use GetPoint to determine if the point clicked on exists

2	IF the point does exist THEN

	1.	IF mouse cursor is being dragged THEN

		1.	DO WHILE mouse button NOT released

			1.	Change the selected point’s coordinates to the 					current mouse coordinates

		ELSE

		1.	Delete the point from the 3D Object

Algorithm for DoButton:

1.	CASE Insert/Delete

	1.	IF Insert mode THEN

		1.	Switch to Delete mode

		ELSE

		1.	Switch to Insert mode

2.	CASE Point/Face

	1.	IF Point mode THEN

		1.	Switch to Face mode

		ELSE

		1.	Switch to Point mode

3.	CASE Save

	1.	Get a valid file name

	2.	Save the 3D Object to the file name

4.	CASE Load

	1.	Get a valid file name

	2.	Load new information into the 3D Object

5.	CASE Palette

	1.	Get a valid file name

	2.	Load the palette into memory

	3.	Set the palette to the loaded palette

6.	CASE EditFace

	1.	Use DeleteFace to select and delete a face

	2.	Use InsertFace to re-insert the face with new information

7.	CASE EditAllFaces

	1.	Get face information

	2.	FOR cnt = 0 TO NumberOf Point-1 DO

		1.	Use DeleteFace to delete 3D Object’s face (cnt)

		2.	Add the face with new information

8.	CASE Scale+

	1.	Rescale 3D Object’s data points by factor 1.125

9.	CASE Scale-

	1.	Rescale 3D Object’s data points by factor 0.875

10.	CASE Move

	1.	Move 3D Object’s data points with increment in certain 				direction

11.	CASE 3D-Animation

	1.	DO WHILE NOT stop

		1.	IF mouse NOT clicked on a button THEN

			1.	Insert the mouse coordinates in Control Position

			2.	Let user set orientation of object at that position

			3.	Insert the orientation in Control Position

			ELSE

			1.	IF mouse clicked on stop button THEN

				1.	stop = TRUE

	2.	stop = FALSE

	3.	DO WHILE NOT stop

		1.	IF mouse clicked on Faster button THEN

			1.	Set 3D Animation’s speed faster

		2.	IF mouse clicked on Slower button THEN

			1.	Set 3D Animation’s speed slower

		3.	IF mouse clicked on Stop button THEN

			1.	stop = TRUE

	2.	Get a valid file name from user

	3.	Save the 3D Animation to file

12.	CASE ShowInfo

	1.	Draw 2D views of object

	2.	Show a 3D rotation of object

	3.	Show number of points and number of faces

13.	CASE	 Clear

	1.	Delete all the object’s points and faces

	2.	Redraw the Construction and Animation Windows

14.	CASE Help

	1.	Get last mouse coordinates

	2.	Determine on which button mouse button was released

	3.	Show the help screen for that button

2.2.2	 3D Object Instance

Algorithm for Load:

1.	Check if the file to be loaded exists

2.	Read the number of points from the file

3.	FOR cnt = 1 TO number of points DO

	1.	read x,y,z from file

	2.	add the point (x,y,z) to the 3D Object

4.	Read the number of faces

5.	FOR cnt = 1 TO number of faces DO

	1.	read point1, point2, point3, point4, FaceType from file

	2.	add the face (point1,point2,point3,point4) with FaceType to the 			3D Object

6.	Read the Palette file name

7.	Load the Palette file into the 3D Object

�
8.	FOR cnt = 1 TO number of faces DO

	1.	IF face (cnt) of type Wireframe or Solid THEN

		1.	Read the colour of the face

		2.	Set the colour of the face

	2.	IF face (cnt) of type GouraudShading THEN

		1.	Read the two shading colours

		2.	Set the two shading colours

	3.	IF face (cnt) of type Picture THEN

		1.	Read the offsets into the picture at each vertex

		2.	Set the offsets into the picture at each vertex

		3.	Read the show Mode

		4.	Set the show mode to X-Ray or Normal

		5.	Read the picture filename

		6.	Load the picture into memory

	4.	IF face (cnt) of type SpriteAnimation THEN

		1.	Read the Start and Stop picture numbers

		2.	Set the Start and Stop picture numbers

		3.	Read the animation delay

		4.	Set the animation delay

		5.	Read the show Mode

		6.	Set the show mode to X-Ray or Normal

		7.	Read the Animation file name

		8.	Load the Animation file into memory

9.	Close the file

Algorithm for Save:

Same as algorithm for Load but with Write statements

�
Algorithm for Show:

1.	Set the page swopping screen active

2.	Clear the portion of screen where object was shown last

3.	IF the object should bounce THEN

	1.	Calculate the next position and orientation

	2.	Set the object’s new position

4.	Set the object’s new orientation

5.	Rotate the object’s 3D points according to the current view point to get 	the Eye-coordinates from the World-coordinates

6.	Project the object’s Eye-coordinates to get the Screen-coordinates for a 	perspective transformation.

7.	Calculate each face’s distance from the current view point

8.	Sort the faces according to the distance from the current view point

9.	Draw all the faces starting with the face furthest from the current view 	point, so that the faces gets to be drawn back to front.

10.	Calculate the portion of the screen which was drawn on

11.	Copy that portion of the screen to the visual screen.

12.	Set the visual screen active

2.2.3	 3D Animation Instance

Algorithm for Load:

1.	Check if the file name exists

2.	Read the number of Control Positions

3.	Read the number of Intervals (between each Control Position)

4.	FOR cnt = 1 TO number of Control Positions DO

	1.	Read x,y

	2.	Set the (x,y) position

	3.	Read the scale

	4.	Set the scale

	5.	Read rotation_x, rotation_y, rotation_z

	6.	Set the orientation to (rotation_x,rotation_y,rotation_z)

5.	Close file

Algorithm for Save:

Same algorithm for Load but with Write Statements

Algorithm for Show:

1.	IF a new Control Position is reached THEN

	1.	Do CalcRotInc to determine the rotation increase for each axis 			at each interval between this Control Position and the next.

	2.	Calculate the Scale Increase

	3.	Set up the B-Spline matrix

2.	Calculate the next X,Y position according to the current interval

3.	Set the 3D Object’s screen position to X,Y

4.	Set the 3D Object’s distance from the view point according to the scale 	factor

5.	Set the 3D Object’s orientation according to the rotation increments

6.	Call the 3D Object’s Show method

Algorithm for CalcRotInc:

1.	Calculate the direction for the smallest rotation from the current 	x-	rotation to the desired x-rotation.

2.	rx_inc = number of degrees to turn / number of intervals in B-Spline

3.	Calculate the direction for the smallest rotation from the current 	y-	rotation to the desired y-rotation.

4.	ry_inc = number of degrees to turn / number of intervals in B-Spline

5.	Calculate the direction for the smallest rotation from the current 	z-	rotation to the desired z-rotation.

6.	rz_inc = number of degrees to turn / number of intervals in B-Spline

�
2.3	System Evolution

The 3D Object and 3D Animation classes have been developed using Object Oriented Design, which makes the code very reusable and very easy to maintain. Any other features can easily be added to the 3D Object class. For example, adding other face types, like Phong Shading, would just be added as another available face type which will be handled with polymorphism.

The User Interface is also easy to maintain because most of the work is done by clicking on buttons, and the buttons’ coordinates are easy to change. It is also easy to add new buttons.

�
							 CHAPTER 3

			 DESIGN SPECIFICATIONS

w OBJECTIVES

	This chapter will tell you more about the design of the 	Citigrade 3D Editor.

w CONTENTS

	3.1	The User Interface

	3.2	3D Objects

	3.3	3D Animations

	3,4	File Formats

�
3.1	The User Interface

Designing the user interface was the most challenging task of the whole system. The problem is that to design and edit a 3D object, you obviously have to be able to move your cursor around in 3D space. But, the keyboard cursor keys and mouse pointing device can only allow you move in 2D space.

To design an easy-to-use user interface, I went back to my pen and paper. How do we design 3D objects on a sheet of paper? Well, we simply draw a 3D Axis and draw the object on it. Because you know what the orientation of the object is, your brain can very easily interpret the 2D drawing as a 3D object.

This is then how I came up with the idea of designing a 3D object on a fixed 3D Axis, just like you would on paper. The advantage is that because the system don’t allow you to rotate the actual 3D Axis, your brain will always be able to easily interpret the 2D drawing on the fixed 3D axis, which is not the case with any other 3D object editor I have ever worked with. The fixed 3D axis also allows you to use your mouse. The 3D axis is a fixed 30 by 60 degrees axis. This allows you to see each Z-plane as a 2D window in which your mouse cursor can move freely. The following illustrates this:

��

�
A problem arises when using a fixed 3D axis. The object cannot be shown completely on the fixed 3D axis, because you would not be able to see any points or faces at the back side of the object. To solve this problem, just show all the object’s faces as wireframe so that you can see through them to the back side points and faces of the object. Now we just need to show the complete 3D object in a smaller Animation window so that the user can see what the object looks like while it is being designed and edited. The user can then also rotate the object in the Animation window to be able to view all the faces of the object.

3.2	3D Objects

3D Objects consist of a number of 3D points and faces. Each 3D object must then have an array of 3D points and an array of faces.

Each 3D point consist of a set of (x,y,z) - World Coordinates, a set of (x,y,z) - Eye Coordinates and a set of (x,y) - Screen Coordinates. World Coordinates are the actual 3D coordinates of the object in real 3D space. The Eye-Coordinates is how the object is seen from the current view point, that is, the World-Coordinates are rotated to the right orientation and a perspective factor is added using the distance from the current view point. The Screen-Coordinates are calculated by projecting the 3D Eye-Coordinates onto a 2D “screen”.

World-Coordinates	(x , y ,z)

		Viewing Transformation

Eye-Coordinates		(x’,y’,z’)

		Perspective Transformation

Screen Coordinates	(X,Y)

Each face consist of four vertices which is 3D points connected to one another in a clockwise or counter-clockwise direction, to form a polygon. Each face has a type which are handled with polymorphism because for each face type, different amounts of memory will be used.

wViewing Transformation		([AMM92] , [MCC91])

Rotation about the X axis:	x’ = x

				y’ = Sin(a) * z + Cos(a) * y

				z’ = Cos(a) * z - Sin(a) * y	

Rotation about the Y axis:	x’ = Cos(b) * x - Sin(b) * z	

				y’ = y

				z’ = Sin(b) * x + Cos(b) * z

Rotation about the X axis:	x’ = Cos(d) * x + Sin(d) * y	

				y’ = Cos(d) * y - Sin(d) * x	

				z’ = z	

with a, b and d the degrees of rotation about the X, Y and Z axis.

wPerspective Transformation

X = x’ / z’

Y = y’ / z’

References:	[AMM92] - Leendert Ammeraal, Programming Principles in Computer Graphics

			 - Wiley 1992

		[MCC91] - James McCord, Borland C++ Programmer’s Guide to Graphics

			 - SAMS 1991

�
3.3	3D Animations

To animate a 3D object, one can specify a 3D animation path, but that would mean calculating a B-Spline in 3D space. It is much faster and simpler to calculate a B-Spline in 2D space.

A 3D animation sequence can be constructed by using a number of Control Positions. A Control Position is basically a 2D position on the screen which knows the orientation and scale of a 3D object at that 2D position on the screen.

You can insert a lot of Control Positions with each one just differing a little from the previous one to make the animation smooth. But why not let the computer do the hard work for you?

By using a B-Spline curve, which basically generates a smooth curve through a number of points, you can insert only a few Control Positions and by setting the number of intervals between each Control Position, you can determine how smooth the animation must be.

�
The following is a graphical illustration of the design for the 3D Object and 3D Animation classes.

�

3.4	File Formats

3D Object File Format:

Header String = ‘Citigrade 3D Object File’

Number of 3D Points

X	Y	Z

X	Y	Z

X	Y	Z

...

Number of Faces

Point1	Point2	Point3	Point4	FaceType

Point1	Point2	Point3	Point4	FaceType

Point1	Point2	Point3	Point4	FaceType

...

Palette File Name

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10

...

Wireframe:		#1 = Colour

Solid:			#1 = Colour

Gouraud Shading:	#1 = Colour1

			#2 = Colour2

			#4 = Colour3

			#5 = Colour4

Picture:		(#1, #2) = (x1,y1) upper left offset into picture

			(#3, #4) = (x2,y2) upper right offset into picture

			(#5, #6) = (x3,y3) lower right offset into picture

			(#7, #8) = (x4,y4) lower left offset into picture

			#9 = Show Mode

			#10= Picture File Name

Sprite Animaion:	#1 = Start picture

			#2 = Stop picture

			#3 = Animation Delay

			#9 = Show Mode

			#10= Animation File Name

3D Animation File Format:

Header String = ‘Anim3D File’

Number of Control Positions

Number of Intervals between each Control Position

X-Pos	 Y-Pos	 Distance	X-Rotation	Y-Rotation	Z-Rotation

X-Pos	 Y-Pos	 Distance	X-Rotation	Y-Rotation	Z-Rotation

X-Pos	 Y-Pos	 Distance	X-Rotation	Y-Rotation	Z-Rotation

...

