Problem

The problem with sprite routines is that not only do they need to store transparent pixels, but they also have to check to see if it's transparent so as not to display it. A typical sprite contains a lot of transparent pixels, many over 50%! That is a big waste of space. This also affects the speed of the routine since it needs to check all of these transparent pixels. The obvious problems are size and speed.

Solution

Wouldn't it be nice if there was a method that would solve both of these problems? I propose that the transparent pixels be compressed while the rest of the pixels remain the same.

Procedure

Consider the following run of pixels with 0 representing the transparent color(underlined):

0, 0, 0, 0, 1, 3 ,2 , 4, 0, 0, 0, 0, 0, 5, 6

To compress the transparent pixels, look for an initial transparent pixel and count the number of consecutive transparent pixels. First, store the number of consecutive pixels and store the pixel after it. Let's do that for the first run of transparent pixels in the above example. Here is the result:

4, 0, 1, 3 ,2 , 4, 0, 0, 0, 0, 0, 5, 6

Notice that the result is underlined. Now let's do it again for the second run of transparent pixels.

4, 0, 1, 3 ,2 , 4, 5, 0, 5, 6

Again the result is underlined. Just like that, we have compressed the original size of 15 elements to just 10 and at the same time reduce time needed for checking transparent pixels. All you have to do is check if the pixel is transparent and if it is, skip the number of consecutive transparent pixels, which is already stored.

We are not finished yet. We also need to know how many consecutive non-transparent pixels there are. This is done similarly. Store the number of consecutive non-transparent pixels before the actual pixels and leave the actual pixels alone. Here is the result:

4, 0, 4, 1, 3 ,2 , 4, 5, 0, 2, 5, 6

Again the result is underlined. However, since 2 extra numbers were added, the total number of elements increased to 12. Now, there is no need to check when a run of transparent or non-transparent pixels end or start.

Here is a summary of my algorithm:

Compress transparent pixels by first storing the number of consecutive transparent pixels and storing the actual transparent pixel after it.

Store the number of consecutive non-transparent pixels before the actual pixels.

Results

Sorry, I haven't done any profiling nor am I very experienced at it. You could send me results of your profiling if you like. I've only seen the re
