DSun

microsystems

Sun™ Grid Engine 5.2.3 Manual

Sun Microsystems, Inc.

901 San Antonio Road

Palo Alto, CA 94303-4900 U.S.A.
650-960-1300

Part No. 816-2077-10
July 2001

Copyright 2001 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, CA 94303-4900 U.S.A. All rights reserved.

This product or document is distributed under licenses restricting its use, copying, distribution, and decompilation. No part of this product or
document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any. Third-party
software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in
the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, AnswerBook2, docs.sun.com, and Solaris are trademarks, registered trademarks, or service marks of Sun
Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks
of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by
Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges
the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun
holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN
LOOK GUIs and otherwise comply with Sun’s written license agreements.

Federal Acquisitions: Commercial Software—Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2001 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, CA 94303-4900 Etats-Unis. Tous droits réservés.

Ce produit ou document est distribué avec des licences qui en restreignent 1"utilisation, la copie, la distribution, et la décompilation. Aucune
partie de ce produit ou document ne peut étre reproduite sous aucune forme, par quelque moyen que ce soit, sans 1'autorisation préalable et
écrite de Sun et de ses bailleurs de licence, s'il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de
caracteres, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront étre dérivées des systemes Berkeley BSD licenciés par 'Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, AnswerBook2, docs.sun.com, et Solaris sont des marques de fabrique ou des marques déposées, ou
marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et
sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d autres pays. Les produits portant
les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L'interface d"utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun
reconnait les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d"utilisation visuelle ou graphique
pour l'industrie de l'informatique. Sun détient une licence non exclusive de Xerox sur I'interface d utilisation graphique Xerox, cette licence
couvrant également les licenciés de Sun qui mettent en place I'interface d'utilisation graphique OPEN LOOK et qui en outre se conforment aux
licences écrites de Sun.

LA DOCUMENTATION EST FOURNIE “EN L'ETAT” ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES
OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT
TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L’APTITUDE A UNE UTILISATION PARTICULIERE OU A
L’ABSENCE DE CONTREFACON.

K‘W

Adobe PostScript

Contents

Quick Start Guide 15
Introduction 15
Document Organization 15
Sun Grid Engine Components and Concepts 16
How Sun Grid Engine Operates 16
A “Sun Grid Engine-Bank” 16
Jobs and Queues - the Sun Grid Engine World 17
Sun Grid Engine Components 17
Hosts 18
Daemons 18
Queues 19
Client Commands 19
Quick Start Installation Guide 22
Prerequisites 22
Installation Accounts 22
Creating the Installation Directory 22
Adding a Service to the Services Database 23
Reading the Distribution Media 23

Installing a Default Sun Grid Engine System for your Cluster 24

Contents iii

Installing the Master Host 24
The Execution Host Installation 25
The Default System Configuration 26
Quick Start User’s Guide 28
Running a Simple Job 28
Basic Use of the Graphical User’s Interface gmon 30
A Guide Through the Sun Grid Engine Manual Set 33
The Sun Grid Engine Installation and Administration Guide 33
The Sun Grid Engine User’s Guide 35
The Sun Grid Engine Reference Manual 37

Glossary of Sun Grid Engine Terms 37

2. Installation and Administration Guide 41
Introduction 41
Installation 42
Overview 42
Phase 1 - Planning 42
Phase 2 - Install the Software 43
Phase 3 - Verify the Installation 43
Planning 43
Prerequisite Tasks 43
Installation Plan 49
Reading the Distribution Media 49
Installing the Master Host 50
Installing Execution Hosts 51
Installing Administration and Submit Hosts 52
Verifying the Installation 52

Architectural Dependencies 55

Sun Grid Engine ¢ July 2001

Master and Shadow Master Configuration 55
Sun Grid Engine Daemons and Hosts 56
Classification 56
Configuring Hosts 57
Administrative Hosts 58
Submit Hosts 60
Execution Hosts 62
Killing and Restarting Daemons 69
Cluster Configuration 70
The Basic Cluster Configuration 70
Displaying the Basic Cluster Configurations 71
Modifying the Basic Cluster Configurations 71
Displaying the Cluster Configuration with gmon 72

Modifying global and Host Configurations
with gnon 73

Configuring Queues 75

Configuring Queues with gmon 75
Configuring General Parameters 76
Configuring Execution Method Parameters 77
Configuring Checkpointing Parameters 78
Configuring Load and Suspend Thresholds 79
Configuring Limits 81
Configuring User Complexes 82
Configuring Subordinate Queues 84
Configuring User Access 85
Configuring Owners 86

Configuring Queues from the Command-line 87

The Complexes Concept 88

Contents

vi

Complex Types 90
The Queue Complex 90
The Host Complex 91
The Global Complex: 93
User Defined Complexes 93
Consumable Resources 96
Setting Up Consumable Resources 97
Examples 99
Configuring Complexes 108
Queue Calendars 109
Configuration with gmon 109
Command-line Configuration 112
Load Parameters 113
The Default Load Parameters 113
Adding Site Specific Load Parameters 114
How to Write Your Own Load Sensors 114
Managing User Access 117
Manager Accounts 118
Configure Manager Accounts with gmon 118
Configure Manager Accounts from the Command-line 119
Operator Accounts 120
Configure Operator Accounts with gmon 120
Configure Operator Accounts from the Command-line 121
Queue Owner Accounts 121
User Access Permissions 122
Configure User Access Lists with gmon 122
Configure User Access from the Command-line 124

Scheduling 124

Sun Grid Engine ¢ July 2001

Overview 124
Scheduling Strategies 125
What Happens in a Scheduler Interval 126
Scheduler Monitoring 126
Scheduler Configuration 127
Default Scheduling 127
Scheduling Alternatives 127
Changing the Scheduler Configuration via gmon 131
The Sun Grid Engine Path Aliasing Facility 134
Configuring Default Requests 135
Setting Up a Sun Grid Engine User 137
Customizing gmon 138
Gathering Accounting and Utilization Statistics 139
Checkpointing Support 140
Checkpointing Environments 141
Configuring Checkpointing Environments with gmon 141
Command-line Configuration of Checkpointing Environment. 144
Support of Parallel Environments 145
Parallel Environments 145
Configuring PEs with gmon 145
Configuring PEs from the Command-line 149
The PE Start-up Procedure 150
Termination of the PE 151
Tight Integration of PEs and Sun Grid Engine 152
The Sun Grid Engine Queuing System Interface (QSI) 153
Motivation 153
How Jobs for Another Queueing System are Processed 153

The QSI Configuration File 154

Contents

vii

Setting Up QS Command Procedures 155
An Example of a QSI file 156
Monitoring QSI Daemons and Jobs 157
Trouble Shooting 158
Scheduler Monitoring 158
Retrieving Error Reports 158

Running Sun Grid Engine Programs in Debug Mode 159

3. User’s Guide 161
Introduction 161
Sun Grid Engine User Types and Operations 162
Navigating through the Sun Grid Engine System 163
Overview on Host Functionality 163
The Master Host 164
Execution Hosts 164
Administration Hosts 164
Submit Hosts 165
Queues and Queue Properties 165
The Queue Control gmon Dialogue 165
Show Properties with the gmon Object Browser 165
Queue Information from the Command-line 166
Requestable Attributes 168
User Access Permissions 171
Managers, Operators and Owners 173
Submit Batch Jobs 173
Shell Scripts 173
Example Script File 174
Submitting Sun Grid Engine Jobs 175

viii Sun Grid Engine * July 2001

Submitting jobs with gmon (Simple Example) 175
Submitting jobs with gmon (Extended Example) 177
Submitting Jobs with gmon (Advanced Example) 181
Extensions to Regular Shell Scripts 185
Submitting Jobs from the Command-line 189
Default Requests 190
Resource Requirement Definition 191
How Sun Grid Engine Allocates Resources 194
Array Jobs 194
Parallel Jobs 196
Submitting Jobs to Other Queueing Systems 198
How Sun Grid Engine Jobs Are Scheduled 199
Job Scheduling 199
Queue Selection 200
Submit Interactive Jobs 200
Submit Interactive Jobs with gmon 201
Submitting Interactive Jobs with gsh 203
Submitting Interactive Jobs with glogin 204
Transparent Remote Execution 204
Remote Execution with grsh 204
Qrsh Usage 205
Transparent Job Distribution with gtcsh 206
Qtcsh Usage 206
Parallel Makefile Processing with gmake 208
Qmake Usage 209
Checkpointing Jobs 211
User Level Checkpointing 211
Kernel Level Checkpointing 211

Contents

Migration of Checkpointing Jobs 212
Composing a Checkpointing Job Script 212
Submit/Monitor/Delete a Checkpointing Job 213
Submit a Checkpointing Job with gmon 214
File System Requirements 215
Monitoring and Controlling Sun Grid Engine Jobs 216
Monitoring and Controlling Jobs with gmon 216
Additional Information with the gmon Object Browser 226
Monitoring with gstat 227
Monitoring by Electronic Mail 230
Controlling Sun Grid Engine Jobs from the Command-line 230
Job Dependencies 231
Controlling Queues 232
Controlling Queues with gmon 232
Controlling Queues with gmod 236

Customizing gmon 237

4. Reference Manual 239
Introduction 239
Typographic Conventions 239
SGE_INTRO(1) 240
SGE_CKPT(1) 243
QACCT(1) 245
QCONF(1) 249
QDEL(1) 264
QHOLD(1) 267
QHOST(1) 270
QMAKE(1) 275

X Sun Grid Engine ¢ July 2001

QMOD(1) 279
QMON(1) 282

QRLS(1) 291
QSELECT(1) 294
QSTAT(1) 297
QTCSH(1) 306
SUBMIT(1) 310
ACCESS_LIST(5) 332
ACCOUNTING(5) 333
CALENDAR_CONF(5) 336
CHECKPOINT(5) 340
COD_REQUEST(5) 344
CODINE_ALIASES(5) 346
SGE_CONF(5) 348
SGE_H_ALIASES(5) 366
SGE_PE(5) 367
COMPLEX(5) 372
HOST_CONE(5) 379
PROJECT(5) 383
QSI_CONF(5) 385
QTASK(5) 391
QUEUE_CONF(5) 393
SCHED_CONF(5) 407
SHARE_TREE(5) 414
USER(5) 415
COD_COMMD(8) 417
COD_EXECD(8) 420
COD_QMASTER(8) 423

Contents

Xi

COD_QSTD(8) 426
COD_SCHEDD(8) 429
COD_SHADOWD(8) 431
COD_SHEPHERD(8) 433
CODCOMMDCNTL(8) 435

xii Sun Grid Engine ¢ July 2001

Preface

How This Book Is Organized

Chapter 1 gives an overview on the Sun™ Grid Engine system, its features and
components. The Sun Grid Engine Quick Start Guide also contains a quick installation
procedure for a small sample Sun Grid Engine configuration and a glossary of terms
commonly used in the Sun Grid Engine manual set.

Chapter 2 is provided for those responsible for the cluster administration. See the
Sun Grid Engine Installation and Administration Guide for a description of the Sun Grid
Engine cluster management facilities.

Chapter 3 is an introduction for the user to the Sun Grid Engine.

Chapter 4 is a reference manual for a detailed discussion of all available Sun Grid
Engine commands.

Xiii

Typographic Conventions

Typeface

Meaning

Examples

AaBbCcl23

AaBbCcl23

AaBbCc123

The names of commands, files,
and directories; on-screen
computer output

What you type, when
contrasted with on-screen
computer output

Book titles, new words or terms,
words to be emphasized

Command-line variable; replace
with a real name or value

Edit your. login file.
Use 1s -a to list all files.
% You have mail.

% su
Password:

Read Chapter 6 in the User’s Guide.
These are called class options.
You must be superuser to do this.

To delete a file, type rm filename.

Ordering Sun Documentation

Fatbrain.com, an Internet professional bookstore, stocks select product

documentation from Sun Microsystems, Inc.

For a list of documents and how to order them, visit the Sun Documentation Center

on Fatbrain.com at:

http://www.fatbrain.com/documentation/sun

Sun Welcomes Your Comments

Sun is interested in improving its documentation and welcomes your comments and

suggestions. You can email your comments to Sun at:

docfeedback@sun.com

Please include the part number (816-2077-10) of your document in the subject line of

your email.

xiv Sun Grid Engine ¢ July 2001

cHAPTER 1

Quick Start Guide

Introduction

Sun Grid Engine (Computing in Distributed Networked Environments) is a load
management tool for heterogeneous, distributed computing environments. Sun Grid
Engine provides an effective method for distributing the batch workload among
multiple computational servers. In doing so, it increases the productivity of all of the
machines and simultaneously increases the number of jobs that can be completed in
a given time period. Also, by increasing the productivity of the workstations, the
need for outside computational resources is reduced.

Document Organization

The subsequent sections in this document will focus on the following goals:
m Sun Grid Engine Components and Concepts

explains Sun Grid Engine’s key concepts and its major components. This chapter
and the “Glossary of Sun Grid Engine Terms” provide the background for using
Sun Grid Engine.

m Quick Start Installation Guide

explains how to install a minimal Sun Grid Engine configuration that will enable
you to run your first example jobs. This minimal set-up does not represent the full
Sun Grid Engine functionality. However, the quick start configuration may be
extend later by means of the Sun Grid Engine administration toolset which is
described in detail in the Sun Grid Engine Installation and Administration Guide.

15

m Quick Start User’s Guide

introduces to the usage (job submission, monitoring) of the basic Sun Grid Engine
system installed following the procedures in section “Quick Start Installation
Guide”.

m A Guide Through the Sun Grid Engine Manual Set

provides an overview and short description of the contents of the Sun Grid
Engine manual set consisting of the Sun Grid Engine Installation and Administration
Guide, the Sun Grid Engine User’s Guide and the Sun Grid Engine Reference Manual.

m Glossary of Sun Grid Engine Terms

gives a definition of commonly used terms in the context of Sun Grid Engine and
resource management in general.

16

Sun Grid Engine Components and
Concepts

How Sun Grid Engine Operates

Sun Grid Engine accepts jobs from the outside world, puts them in a holding area
until they can be executed, sends them from the holding area to an execution device,
manages them during execution and logs the record of their execution when they are
finished.

Let’s use the analogy of a counter-room in a bank, of counters and of customers to
become familiar with the Sun Grid Engine world.

A “Sun Grid Engine-Bank”

Say that customers are waiting in the counter-room of a bank to be served. Each
customer has different requirements. A customer might want to retrieve money from
an account while another customer is seeking investment consulting and has an
appointment. There may be many counters providing the sought service for one
customer, but only a single counter being suitable for another customer. Sun Grid
Engine would organize the service in a counter-room slightly different than you may
be used to from your own bank:
m When entering the counter-room customers have to declare their name, their
affiliations (such as representing a company) and their requirements. In addition,
the time when they entered will be denoted.

Sun Grid Engine ¢ July 2001

m Whenever a counter becomes available, this information is used to select among
the waiting customers those, for which the counter is suitable and finally to
dispatch the customer to the counter who has the highest priority or who waited
to be serviced for the longest time.

m In a “Sun Grid Engine-bank” a counter may be able to provide service to several
customers at the same time. Sun Grid Engine will try to assign new customers to
the “least loaded” and suitable counter.

Jobs and Queues - the Sun Grid Engine World

In a Sun Grid Engine system, jobs correspond to bank customers, jobs wait in a
holding area instead of a counter-room and queues located on computational servers
provide services for jobs as opposed to customers being served at counters. Like in
the case of bank customers, the requirements of the jobs may be very different and
only certain queues may be able to provide the corresponding service, but the
requirements typically consist of available memory, execution speed, available
software licenses and similar needs.

Corresponding to our analogy, Sun Grid Engine arbitrates available resources and

job requirements in the following fashion:

m A user who submits a job to Sun Grid Engine declares a requirement profile for
the job. In addition, the identity of the user and its affiliation with projects or user
groups is retrieved. The time of submission is also stored.

m Assoon as a queue becomes available for execution of a new job, Sun Grid Engine
determines suitable jobs for the queue and will dispatch the job with the highest
priority or longest waiting time.

m Sun Grid Engine queues may allow execution of many jobs concurrently at the
same time. Sun Grid Engine will try to start new jobs in the least loaded and
suitable queue.

Sun Grid Engine Components
Figure 1-1 on page 21 displays the most important Sun Grid Engine components and

their interaction in the system. A short explanation of the components is given in the
following subsections.

Chapter 1 Quick Start Guide 17

18

Hosts
m Master Host:

The master host is central for the overall cluster activity. It runs the master
daemon cod_gmaster and the scheduler daemon cod_schedd. Both daemons
control all Sun Grid Engine components such as queues and jobs and maintain
tables about the status of the components, about user access permissions and the
like.

m Execution Host:

Execution hosts are nodes having permission to execute Sun Grid Engine jobs.
Therefore, they are hosting Sun Grid Engine queues and run the Sun Grid Engine
execution daemon cod_execd.

m Administration Host:

Permission can be given to hosts to carry out any kind of administrative activity
for Sun Grid Engine.

m Submit Host:

Submit hosts allow for submitting and controlling batch jobs only. In particular a
user being logged into a submit host can submit jobs via gsub, can control the job
status via gstat or run Sun Grid Engine's OSF/1 Motif graphical user's interface
gmon.

Note — A host may belong to more than one of the above described classes.

Note — The master host is an administrative and submit host by default.

Daemons
m Master Daemon:

The master daemon cod_gmaster. The center of the cluster’s management and
scheduling activities. cod_gmaster maintains tables about hosts, queues, jobs,
system load and user permissions. It receives scheduling decisions from
cod_schedd and requests actions from cod_execd on the appropriate execution
hosts.

m Scheduler Daemon:

The scheduling daemon cod_schedd. It maintains an up-to-date view of the
cluster’s status with the help of cod_gmaster. It makes scheduling decisions:

= what jobs are dispatched to which queues.

It forwards these decisions to cod_gmaster which initiates the actions decided
on.

Sun Grid Engine ¢ July 2001

m Execution Daemon:

The execution daemon cod_execd. It is responsible for the queues on its host and
for the execution of jobs in these queues. Periodically it forwards information
such as job status or load on its host to cod_gmaster.

m Communication Daemon:

The communication cod_commd. It communicates over a well-known TCP port. It
is used for all communication among Sun Grid Engine components.

Queues

A Sun Grid Engine queue is a container for a class of jobs allowed to execute on a
particular host concurrently. A queue determines certain job attributes; for example,
whether it may be migrated or not. Throughout their lifetimes, running jobs are
associated with their queue. Association with a queue affects some of the things that
can happen to a job. For example, if a queue is suspended, all the jobs associated
with that queue are also suspended.

In Sun Grid Engine there is no need to submit jobs directly to a queue. You only
need to specify the requirement profile of the job (e.g., memory, operating system,
available software, etc.) and Sun Grid Engine will dispatch the job to a suitable
queue on a low loaded host automatically. If a job is submitted to a particular queue,
the job will be bound to this queue and to its host, and thus Sun Grid Engine will be
unable to select a lower loaded or better suited device.

Client Commands

Sun Grid Engine’s command line user interface is a set of ancillary programs
(commands) that let you manage queues, submit and delete jobs, check job status
and suspend/enable queues and jobs. Sun Grid Engine encompasses the following
set of ancillary programs:

m gacct:

extracts arbitrary accounting information from the cluster logfile.
m galter:

changes the attributes of already submitted but still pending jobs.
m gconf:

provides the user interface for cluster and queue configuration.
m gdel:

provides the means for a user/operator/manager to send signals to jobs or
subsets thereof.

Chapter 1 Quick Start Guide 19

20

ghold:

holds back submitted jobs from execution.

ghost:

displays status information about Sun Grid Engine execution hosts.
glogin:

initiates a telnet or similar login session with automatic selection of a low loaded
and suitable host.

gmake:

is a replacement for the standard Unix make facility. It extends make by its ability
to distribute independent make steps across a cluster of suitable machines.

gmod:

allows the owner to suspend or enable a queue (all currently active processes
associated with this queue are also signaled).

gmon:

provides an X-windows Motif command interface and monitoring facility.
gresub:

creates new jobs by copying currently running or pending jobs.

grls:

releases jobs from holds previously assigned to them e.g. via ghold (see above).
grsh:

can be used for various purposes such as providing remote execution of interactive
applications via Sun Grid Engine comparable to the standard Unix facility rsh, to
allow for the submission of batch jobs which, upon execution, support terminal I/O
(standard/error output and standard input) and terminal control, to provide a batch job
submission client which remains active until the job has finished or to allow for the Sun
Grid Engine-controlled remote execution of the tasks of parallel jobs.

gselect:

prints a list of queue names corresponding to specified selection criteria. The
output of gselect is usually fed into other Sun Grid Engine commands to apply
actions on a selected set of queues.

gsh:

opens an interactive shell (in an xterm) on a low loaded host. Any kind of
interactive jobs can be run in this shell.

gstat:

provides a status listing of all jobs and queues associated with the cluster.

Sun Grid Engine ¢ July 2001

m gsub:

is the user interface for submitting a job to Sun Grid Engine.

m gtcsh:

is a fully compatible replacement for the widely known and used Unix C-Shell
(csh) derivative tcsh. It provides a command-shell with the extension of

transparently distributing execution of designated applications to suitable and
lightly loaded hosts via Sun Grid Engine.

All programs communicate with cod_gmaster via cod_commd. This leads to the
schematic view of the component interaction in Sun Grid Engine shown in figure

1-1 on page 21

cod_execd g

=y
Ccod_qmaster) (cod_schedd

__ G

E/N

I arch | osf

o [[© |
sol7 sol7

load | 0.4 1.3 1.3 I

state | idle | idle full

gsub -1 arch=sol7 a.sh

L]

@bmimost TN

Queue State Table

Qileserver

FIGURE 1-1 Component Interaction in Sun Grid Engine

Chapter 1

Quick Start Guide 21

Quick Start Installation Guide

Note — In the following the conditions for applicability of the quick start installation
procedures are described. If your environment does not permit any of the
prerequisites outlined below, the quick installation procedure cannot be used. In this
case, please refer to the Sun Grid Engine Installation and Administration Guide for
detailed information on how to install Sun Grid Engine under more restricted
conditions.

Prerequisites

Installation Accounts

An Administrator account should be created. The Administrator can be an existing
administrative login or a new login such as codadmin. This account will own all of the
files in the Sun Grid Engine installation and spooling directories and it can be used
to configure and administer the cluster once it is installed. This user should not be
root. This account must exist prior to installation!

If you intend to use root for file ownership, the user root must have full write
permissions an all hosts in the directory where Sun Grid Engine is installed. Usually
a shared (NFS) filesystem is not exported for the user root to allow write permission.

Creating the Installation Directory

In preparation of using the Administrator account, you can create the installation
directory preferably on a network-wide share file system using the following
sequence of commands:

% mkdir -p <install_dir>
% chown <adminuser> <install_dir>

% chmod 755 <install _dir>

The directory created by this or a similar procedure will be referred to as Sun Grid
Engine root directory for the remainder of this manual.

22 Sun Grid Engine * July 2001

Adding a Service to the Services Database

Sun Grid Engine uses a TCP port for communication. All hosts in the cluster must
use the same port number. The port number can be placed in several places. For
example:

m NIS (Yellow Pages) services or NIS+ database. Add the following to the services
database:

CODE EXAMPLE 1-1 communication port for Sun Grid Engine

[)

% cod_commd 535/tcp

m /etc/services on each machine. If NIS is not running at your site, then the
above services can be added to the /etc/services file on each machine.

It is recommended to use a privileged port below 600 to avoid conflicts with
applications which bind ports near below 1024 or ports higher than 1024
dynamically.

Reading the Distribution Media

Sun Grid Engine is distributed either on CD-ROM or as archive file through Internet
download. The distribution will consist of a fape archive (tar) directly written on the
medium.

To unpack the Sun Grid Engine distribution, please login as the account you selected
for the installation (see section “Prerequisites” on page 22) to the host from which
you plan to read in the Sun Grid Engine distribution media and change your
working directory to the Sun Grid Engine root directory. Then read in the
distribution media with the following command:

% cd codine_root_dir

% tar -xvpf distribution_source

where codine_root_dir is the pathname of the Sun Grid Engine root directory and
distribution_source is either the name of the tape archive file on hard disk or CD-ROM.
This will read in the Sun Grid Engine installation kit.

Chapter 1 Quick Start Guide 23

Installing a Default Sun Grid Engine System for
your Cluster

A default Sun Grid Engine system consists of a so called master host and an arbitrary
number of execution hosts. The master host controls the overall cluster activity while
the execution hosts control the execution of the jobs being assigned to them by the
master host. A single host may concurrently act as a master host and as an execution
host.

Note — Please install the master host first and then conclude with the installation of
the execution hosts in arbitrary sequence.

Installing the Master Host

Select a machine as the master host. It should fulfill the following characteristics:

m The selected system should not be overloaded with other tasks.

m The master host should provide for enough available main memory to run the
necessary Sun Grid Engine daemons.

Note — The required amount strictly depends on the size of your cluster and the
number of jobs in the system to be expected. For clusters up to a few dozen hosts
and in the order of 100 jobs 10 MB of free memory should be sufficient.

Note — For very large clusters (in the order or above 1000 hosts and several 10000
jobs) you may well need 1 GB of memory.

Now, login to the selected machine. For an installation featuring all capabilities, you
will need to install using the root account (files still may be owned by the
Administrator account created in Section , “Prerequisites” on page 1-22. For a test
installation you may also install as the Administrator user, but then only
Administrator will be able to run jobs and Sun Grid Engine will have restricted
capabilities with respect to monitoring system load and system control.

After logging in, please change directory to the Sun Grid Engine root directory. Then
execute the master host installation procedure with the command:

% ./install gmaster

24 Sun Grid Engine * July 2001

If errors occur, the installation procedure will print a description of the error
condition and you will have to check with the Sun Grid Engine Installation and
Administration Guide to resolve the error.

During the installation you will be asked for a list of hosts you initially want to
install. You should provide a list with all such hosts, since these hosts will be added
as submit hosts and administrative hosts.

The installation of the execution hosts (see below) requires that all hosts are
administrative hosts. If you plan to install Sun Grid Engine on many hosts, the
installation script will give you the possibility to provide the path to a file which
contains the list of all host names with one host per line.

The installation procedure requires some additional information. Most questions will
provide useful defaults, which can simply be confirmed by pressing <returns.

The Execution Host Installation

As with the master host installation, the execution hosts should be installed using
the root account to have access to all Sun Grid Engine facilities. Installing as root still
allows that all files are owned by the Administrator account created in Section ,
“Prerequisites” on page 1-22. Installation using the Administrator account is only
useful for test purposes and prohibits other users than Administrator to run jobs and
does not allow Sun Grid Engine to provide full system monitoring and control
capabilities.

Login as the account selected for the installation to one of the execution hosts
specified during the master host installation procedure and go into the Sun Grid
Engine root directory. Now execute the execution host installation procedure:

[)

% ./install execd

Again any errors are indicated by the installation procedure and require manual
resolving by the help of the detailed information in the Sun Grid Engine Installation
and Administration Guide.

The installation procedure will ask you whether default queues should be
configured for your host. The queues defined in this case will have the
characteristics described in section “The Default System Configuration” below.

If the procedure notifies you of successful completion of the execution host
installation procedure, you can proceed likewise with the next execution host being
on the list you entered during the master host installation. As soon as you are
through with the list, your default Sun Grid Engine system is configured on your
cluster and is ready to be used.

Chapter 1 Quick Start Guide 25

26

The following chapters provide you with an overview on the default configuration
which has been installed and they guide you through the first steps of using Sun
Grid Engine.

The Default System Configuration

Note — The following is a description of the Sun Grid Engine system as configured
in your environment by the quick installation procedure. It is a minimal setup for
testing purposes and may be changed or extended later-on at any time.

After successful completion of the master and execution host installations, the
following basic Sun Grid Engine system has been configured on your cluster:

m Master Host:

The host on which you ran the master host installation procedure is configured to
be the master host of your cluster. No shadow master hosts are configured to take
over the master host’s tasks in case of failure.

m Execution Hosts:

During the master host installation you are asked for a list of machines on which
you want to install the Sun Grid Engine execution agent. During installation of
these execution hosts, you can allow the installation procedure to create queues
automatically on these hosts. A queue describes the profile (a list of attributes and
requirements) of the jobs that can be run on that particular host. The queues being
configured for the execution hosts by default show the following important
characteristics:

= Queue name: <unqualifedhostname>.q

= Slots (concurrent jobs): <number_of_processors>

= The queues provide unlimited system resources (such as memory, CPU-time
etc.) to the jobs.

= The queues do not enforce any access restrictions for particular users or user
groups. Any user with a valid account can run jobs in the queues.

= A load threshold of 1.75 per CPU will be configured (i.e., 1.75 processes
attempting on average to get access to each CPU).

Note — The queue configurations likewise any other Sun Grid Engine configuration
can be changed on-the-fly at any later stage while the system is in operation.

Note = If you invoked the execution host installation procedure on the master host
also, the master host acts both as master and as execution host.

Sun Grid Engine ¢ July 2001

m Administrative Accounts and Hosts:

The master host and all execution hosts are configured to be allowed to execute
administrative Sun Grid Engine commands. The only users that are allowed to
administer Sun Grid Engine are the user root and the Administrator account
described in section “Prerequisites”. If an unprivileged user installs Sun Grid
Engine he is added to the list of Sun Grid Engine administrators too.

m Submit Accounts and Hosts:

If you installed under the root account any user with a valid account can submit
and control Sun Grid Engine jobs. The user under which you installed Sun Grid
Engine will be the only user to whom access is permitted otherwise
(“Prerequisites” on page 22). The tasks of submitting jobs, controlling the Sun
Grid Engine system activity or deleting jobs can be executed from either the
master host or from any execution host.

m Daemons:

The following daemons are started up during system installation on the different
hosts or may be invoked during normal system operation respectively:

= cod_gmaster runs on the master host only. It is the central cluster activity
control daemon.

» cod_schedd is also invoked on the master host only. This daemon is
responsible for distributing the workload in the Sun Grid Engine cluster.

= cod_execd is responsible for executing the jobs on an execution host and,
therefore, is running on all execution hosts.

= One instance of cod_shepherd is run for each job being actually executed on
a host. cod_shepherd controls the jobs process hierarchy and collects
accounting data after the job has finished.

= cod_commd runs on each execution host and on the master host. The network
of all cod_commds forms the network communication backbone of the Sun
Grid Engine cluster.

Chapter 1 Quick Start Guide 27

28

Quick Start User’s Guide

Running a Simple Job

Note — If the Sun Grid Engine system was installed as root with the quick
installation procedure (described in “Quick Start Installation Guide”) any user
account being valid on all machines of the Sun Grid Engine cluster can be used for
the following tests. If Sun Grid Engine was installed under an unprivileged account
you must login as that particular user to be able to run jobs (see “Prerequisites” for
details).

Prior to executing any Sun Grid Engine command, you first need to set your
executable search path and other environmental conditions properly. The easiest
way to achieve the appropriate settings is to execute the command:

% source codine_root_dir/default/common/settings.csh

if one of csh or tcsh is the command interpreter you are using and codine_root_dir
specifies the location of the Sun Grid Engine root directory selected at the beginning
of the quick installation procedure. Alternatively you can execute:

. codine_root_dir/default/common/settings.sh

if sh, ksh or bash is the command interpreter in use.

Note = You can add the above commands into your .login, .cshrc or .profile
files (whichever is appropriate) to guarantee proper Sun Grid Engine settings for all
interactive session you will start later-on.

Sun Grid Engine ¢ July 2001

Now you can try to submit the following simple job script to your Sun Grid Engine
cluster (the job can be found in the file examples/jobs/simple.sh in your Sun
Grid Engine root directory):

#!/bin/sh
#This is a simple example of a Sun Grid Engine batch script
#

Print date and time

date

Sleep for 20 seconds
sleep 20

Print date and time again
date

End of script file

The Sun Grid Engine command to submit such job scripts is:

[)

% gsub simple.sh

if simple.sh is the name of the script file in which the above script is stored and if the
file is located in your current working directory. The gsub command should confirm
the successful job submission as follows:

your job 1 (“simple.sh”) has been submitted

Now you can retrieve status information on your job via the command:

[)

% gstat

You should receive a status report containing information about all jobs currently
known to the Sun Grid Engine system and for each of them the so called job ID (the
unique number being included in the submit confirmation), the name of the job

script, the owner of the job, a state information (“r” means running), the submit or
start time and eventually the name of the queue in which the job executes.

If no output is produced by the gstat command, no jobs are actually known to the
system - for example, your job may already have finished. You can control the
output of the finished jobs by checking their stdout and stderr redirection files. By
default, these files are generated in the job owner’s home directory on the host
which has executed the job. The names of the files are composed of the job script file

“_ “_ 1

name, an appended dot sign followed by an “o” for the stdout file and an “e” for the

Chapter 1 Quick Start Guide 29

stderr file and finally the unique job ID. Thus the stdout and stderr files of your first
job can be found under the names simple.sh.ol and simple.sh.el
respectively.

Basic Use of the Graphical User’s Interface gmon

A more convenient method of submitting and controlling Sun Grid Engine jobs and
of getting an overview on the Sun Grid Engine system is the X-windows OSF/Motif
graphical user’s interface gmon. Among other facilities gmon provides a job
submission menu and a job control dialog for the tasks of submitting and monitoring
jobs.

gmon is simply invoked by typing:

[

% gmon

from the command line prompt. During start-up a message window is displayed.
Afterwards the gmon main control panel will appear.

@MON === Main Control (Ol x]

File Task Hap |

. \ !
Click here and here
FIGURE 1-2 gmon main control menu

Now use the left mouse button to click on the Job Control and the Submit buttons
thus opening the Job Control and the submit dialogs (see figure 1-3 on page 31
and figure 1-4 on page 32 respectively). The button names (such as Job Control)
are displayed when moving the mouse pointer over the buttons.

30 Sun Grid Engine ¢ July 2001

[E] GMON === Job Submission

FIGURE 1-3 gmon Job Submission menu

Chapter 1 Quick Start Guide 31

[E] aMON === Job Control

FIGURE 1-4 gmon Job Control dialog

To submit a job from the Job Submission menu you first may want to select your
job script file. Click on the Job Script file selection icon to open a file selection box
and select your script file (e.g. the file simple.sh from the command line example).
Then click on the Submit button at the bottom of the Job Submission menu. After a
couple of seconds, you should be able to monitor your job in the Job Control panel.
You will first see it under Pending Jobs and it will quickly move to Running Jobs
once it gets started.

32 Sun Grid Engine ¢ July 2001

A Guide Through the Sun Grid Engine
Manual Set

The Sun Grid Engine Installation and Administration
Guide

The following central facilities and concepts of Sun Grid Engine installation and
administration are presented in the Sun Grid Engine Installation and Administration
Guide:

m Introduction

A short introduction of the Sun Grid Engine system and the Sun Grid Engine
manual set is given.

m Installation

The installation procedure is described allowing for consideration of ample
environmental conditions and site requirements. An overview on the directory
structure generated and used by Sun Grid Engine is given.

m Architectural Dependencies
Differences for various operating system platforms are pointed out.
m Master and Shadow Master Configuration

The configuration of one or multiple hosts as Sun Grid Engine master hosts and
failover servers for the master server is explained.

m Sun Grid Engine Daemons and Hosts

Properties and configuration of the various Sun Grid Engine host types are
explained. It is also shown how Sun Grid Engine daemons can be shut down and
restarted.

m Cluster Configuration

The cluster configuration contains cluster-wide and host-specific parameters
defining filename paths used by Sun Grid Engine and specifying the general Sun
Grid Engine behavior. The section explains these parameters and shows how to
change them.

Chapter 1 Quick Start Guide 33

m Configuring Queues

Sun Grid Engine queues are the representations of the various job classes to be
supported on a cluster. Thus, configuring queues is the projection of the intended
utilization profile of the cluster onto Sun Grid Engine internal structures. The
facilities to administer Sun Grid Engine queues are described in detail.

m The Complexes Concept

The complexes concept is central for the definition and handling of the attributes
that jobs can request from the Sun Grid Engine system. Via the configuration of
complexes user requestable resources are managed such as job limits, host load
values, installed software, available software licenses and consumable resources
like available memory. A detailed explanation of the concept and the handling of
complexes is provided.

m Queue Calendars

Calendars allow to define availability and unavailability time periods for queues
based on day-of-year, day-of-week and time-of-day. This chapter describes how to
configure the queue availability policy for public holidays, weekends, office hours
and the like.

m Load Parameters

Sun Grid Engine periodically retrieves a variety of system load and system
information indices called load parameters from each execution host. These load
parameters are used throughout the Sun Grid Engine system for load balancing
and other load dependent scheduling policies. The section describes the standard
load parameter set and explains the Sun Grid Engine interface to extend the
standard set of load parameters by customized site specific indices.

m Managing User Access

Sun Grid Engine provides ample facilities to manage user permissions and access
of users and user groups to the Sun Grid Engine system. This section describes
the various categories of users in Sun Grid Engine, their configuration as well as
the configuration and usage of access lists.

m Scheduling

The policies of a site with respect to resource utilization are mainly implemented
by Sun Grid Engine’s scheduling policies. The understanding of Sun Grid
Engine’s scheduling schemes and of the corresponding configuration facilities is
vital to being able to implement policies. Therefore, this section contains a
comprehensive description of the Sun Grid Engine scheduling and its
configuration.

m The Sun Grid Engine Path Aliasing Facility

Sun Grid Engine provides a mechanism to hide file path inconsistencies which
often occur in heterogeneous networked environments. Inconsistent file paths
across hosts can be aliased to a single unique Sun Grid Engine internal name. The
section explains when and how to use this facility.

34 Sun Grid Engine ¢ July 2001

m Configuring Default Request

The cluster administration can define default Sun Grid Engine job profiles for
users to reduce the effort required for job submission and to avoid errors. The
section explains how these so called default request can be used.

m Setting Up a Sun Grid Engine User

The required steps to set up Sun Grid Engine users are described. It is also
explained how user access can be restricted.

m Customizing Qmon

The configuration capabilities of the OSF/Motif graphical user interface gmon are
described.

m Gathering Accounting and Utilization Statistics
The accounting facilities of Sun Grid Engine is explained.
m Checkpointing Support

This section describes how Sun Grid Engine can utilize checkpointing
environments and how Sun Grid Engine can be integrated with checkpointing
facilities. It also gives an overview of the benefits, restrictions and prerequisites
associated with checkpointing.

m Support of Parallel Environments

Sun Grid Engine provides a flexible and easy to use interface to arbitrary parallel
environments including shared memory, PVM!, MPI?, etc. The configuration
necessary to run parallel jobs on such environments is explained.

m The Sun Grid Engine Queuing System Interface (QSI)

Sun Grid Engine offers a general interface to other queuing systems. The steps for
configuring the interface properly for exchanging jobs with an other queuing
system are described.

m Trouble Shooting

Help is provided for the most common pitfalls and problems that may occur
while installing, administering or running Sun Grid Engine.

The Sun Grid Engine User’s Guide

m Introduction

A short introduction of the Sun Grid Engine system and the Sun Grid Engine
manual set is given.

1.Parallel Virtual Machine, Oak Ridge National Laboratories
2.Message Passing Interface

Chapter 1 Quick Start Guide 35

36

Sun Grid Engine User Types and Operations

The various user categories Sun Grid Engine supports and their permissions are
explained.

Navigating through the Sun Grid Engine System

Useful information is provided to the user for navigating through the Sun Grid
Engine system and for retrieving required information.

Submit Batch Jobs

Sun Grid Engine’s job submission facilities are shown in many facets, among
them: submission of batch, parallel and array jobs with gmon and from the
command-line. The section explains in addition how a batch job should be
constructed and how Sun Grid Engine interacts with the job script and schedules
the job.

Submit Interactive Jobs

Sun Grid Engine supports not only batch jobs but also interactive access to Sun
Grid Engine resources. The differences between batch and interactive usage are
explained.

Transparent Remote Execution

Sun Grid Engine’s means to transparently pass execution of specific tasks on to
remote resources are described in this section. Sun Grid Engine provides its own
versions of a remote shell command (grsh), of a parallel make facility (gmake)
and of an interactive command interpreter (gt csh) for that purpose. This section
is closely linked to the submission of interactive jobs.

Checkpointing Jobs

Checkpointing Jobs are supported for fault tolerance and dynamic load balancing
reasons. If they are aborted during execution because of system failure or because
the job had to be removed from an overloaded system, the job can be migrated to
another suitable host and can restart from the latest checkpoint. The preparations
necessary to enforce checkpointing for a job are explained.

Monitoring and Controlling Sun Grid Engine Jobs

Comprehensive facilities are available in Sun Grid Engine to monitor and control
(e.g., cancel, suspend, resume) jobs and this section gives a detailed description.

Job Dependencies

Sun Grid Engine jobs may depend on successful completion of other jobs running
previously. The means how to set up job dependencies are described.

Controlling Queues

The section shows how Sun Grid Engine queues can be monitored and controlled,
i.e. suspended/resumed and disabled/enabled, via gmon and from the
command-line.

Sun Grid Engine ¢ July 2001

m Customizing Qmon

The configuration capabilities of the OSF/Motif graphical user interface gmon are
described.

The Sun Grid Engine Reference Manual

m User and Administrative Commands

All commands available to the user and administrator from the command line are
described in detail including command line options, environmental conditions
and the like. The command line invocation of graphical user’s interfaces is also
explained.

m Application Programmer’s Interface

An interface and functionality description of the user callable Sun Grid Engine
API routines is given.

m File Formats
The format of Sun Grid Engine administrative files is explained.
m Sun Grid Engine Daemons

All Sun Grid Engine daemons together with the feasible command line switches
and environmental conditions are described for administrative purposes.

Glossary of Sun Grid Engine Terms

The glossary provides a short overview on frequently used terms in the context of
Sun Grid Engine and resource management in general. Many of the terms have not
been used so far, but will appear in other parts of the Sun Grid Engine
documentation.

access list A list of users and UNIX groups who are permitted, or denied, access to a
resource such as a queue or a certain host. Users and groups may belong to
multiple access lists and the same access lists can be used in various contexts.

cell A separate Sun Grid Engine cluster with a separate configuration and master
machine. Cells can be used to loosely couple separate administrative units.

Chapter 1 Quick Start Guide 37

38

checkpointing

checkpointing
environment

cluster

complex

group

hard resource
requirements

host

job

job array

job class

manager

migration

A procedure which saves the execution status of a job into a so called checkpoint
thereby allowing for the job to be aborted and resumed later without loss of
information and already completed work. The process is called migration, if the
checkpoint is moved to another host before execution resumes.

A Sun Grid Engine configuration entity, which defines events, interfaces and
actions being associated with a certain method of checkpointing.

A collection of machines, called hosts, on which Sun Grid Engine functions
occur.

A set of attributes that can be associated with a queue, a host, or the entire
cluster.

A UNIX group.

The resources which must be allocated before a job may be started. Contrasts
with soft resource requirements.

A machine on which Sun Grid Engine functions occur.

A batch job is a UNIX shell script that can be executed without user
intervention and does not require access to a terminal.

An interactive job is a session started with the Sun Grid Engine commands
gsh or glogin that will open an xterm window for user interaction or
provide the equivalent of a remote login session, respectively.

A job consisting of a range of independent identical tasks. Each task is very
similar to a separate job. Job array tasks only differ by a unique task identifier
(an integer number).

A set of jobs that are equivalent in some sense and treated similarly. In Sun
Grid Engine a job class is defined by the identical requirements of the
corresponding jobs and the characteristics of the queues being suitable for
those queues.

A user who can manipulate all aspects of Sun Grid Engine. The superusers of
the master host and of any other machine being declared as an administrative
host have manager privileges. Manager privileges can be assigned to non-root
user accounts as well.

The process of moving a checkpoint from one host to another before execution
of the job resumes.

Sun Grid Engine ¢ July 2001

operator

owner

parallel environment

parallel job

policy

priority

queue

resource

soft resource
requirements

suspension

user

userset

Users who can perform the same commands as managers except that they
cannot change the configuration but rather are supposed to maintain
operation.

Users who may suspend/unsuspend and disable/enable the queues they own.
Typically users are owners of the queues that reside on their workstations.

A Sun Grid Engine configuration entity, which defines the necessary interfaces
for Sun Grid Engine to correctly handle parallel jobs.

A job which consists of more than one closely correlated task. Tasks may be
distributed across multiple hosts. Parallel jobs usually use communication tools
such as shared memory or message passing (MPI, PVM) to synchronize and
correlate tasks.

A set of rules and configurations which the Sun Grid Engine administrator can
use define the behavior of Sun Grid Engine. Policies will be implemented
automatically by Sun Grid Engine.

The relative level of importance of a Sun Grid Engine job compared to others.

A container for a certain class and number of jobs being allowed to execute on
a Sun Grid Engine execution host concurrently.

A computational device consumed or occupied by running jobs. Typical
examples are memory, CPU, I/O bandwidth, file space, software licenses, etc.

Resources which a job needs but which do not have to be allocated before a job
may be started. Allocated to a job on an as available basis. Contrast with hard
resource requirements.

The process of holding a running job but keeping it on the execution machine
(in contrast to checkpointing, where the job is aborted). A suspended job still
consumes some resources, such as swap memory or file space.

May submit jobs to and execute jobs with Sun Grid Engine if s/he has a valid
login on at least one submit host and an execution host.

Either an access list (see above) or a department (see above).

Chapter 1 Quick Start Guide 39

40 Sun Grid Engine * July 2001

CHAPTER 2

Installation and Administration
Guide

Introduction

Sun Grid Engine (Computing in Distributed Networked Environments) is a load
management tool for heterogeneous, distributed computing environments. Sun Grid
Engine provides an effective method for distributing the batch workload among
multiple computational servers. In doing so, it increases the productivity of all of the
machines and simultaneously increases the number of jobs that can be completed in
a given time period. Also, by increasing the productivity of the workstations, the
need for outside computational resources is reduced.

Please refer to the Sun Grid Engine Quick Start Guide for an overview on the Sun Grid
Engine system, its features and components. The Sun Grid Engine Quick Start Guide
also contains a quick installation procedure for a small sample Sun Grid Engine
configuration and a glossary of terms commonly used in the Sun Grid Engine
manual set.

For detailed information on the end-user related aspects of Sun Grid Engine, the
reader is pointed to the Sun Grid Engine User’s Guide. In addition, the Sun Grid
Engine Reference Manual provides reference manual pages for all Sun Grid Engine
commands, components and file formats.

The remainder of the Sun Grid Engine Installation and Administration Guide will focus
on detailed installation instructions and a comprehensive description of Sun Grid
Engine’s administrative tasks and toolsets.

41

Installation

Overview

Installation consists of:

m Planning the Sun Grid Engine configuration and environment.

m Reading the Sun Grid Engine distribution files from an external medium onto a
workstation.

m Running an installation script on the master host and every execution host in the
Sun Grid Engine system.

m Registering information about administrative and submit hosts.

m Verifying the installation.

Installation should be done by someone familiar with UNIX. It is done in three
phases:

Phase 1 - Planning

1. Decide whether your Sun Grid Engine environment will be a single cluster or a
collection of sub-clusters called cells.

2. Select the machines that will be Sun Grid Engine hosts. Determine what kind(s)
of host(s) each machine will be — master host, shadow master host,
administration host, submit host and /or execution host.

3. Make sure that all Sun Grid Engine users have the same user ids on all submit
and execution hosts.

4. Decide what the Sun Grid Engine directory organization will be (for example, a
complete tree on each workstation, directories cross mounted, a partial directory
tree on some workstations) and where each Sun Grid Engine root directory will be
located.

5. Decide on the site’s queue structure.

6. Decide whether network services will be defined as an NIS (Network Information
Services) file or local to each workstation in /etc/services.

7. Complete the installation worksheet (refer to table 2-1 on page 49). You will use
this information in subsequent installation steps.

42 Sun Grid Engine ¢ July 2001

= LN

Phase 2 - Install the Software

Create the installation directory and load the distribution files into it.
Install the master host.

Install all execution hosts.

Register all administrative hosts.

Register all submit hosts.

Phase 3 - Verify the Installation

Check that the daemons are running on the master host.
Check that the daemons are running on all execution hosts.
Check that Sun Grid Engine executes simple commands.

Submit test jobs.

Planning

Prerequisite Tasks

The Sun Grid Engine installation procedure creates a default configuration for the
system it is executed on. It inquires the operating system type hosting the
installation and makes meaningful settings based on this information.

The following sections contain the information to install a production Sun Grid
Engine system:

The Installation Directory <codine_root>

Please prepare a directory to read in the contents of the Sun Grid Engine distribution
media. This directory will be called the Sun Grid Engine root directory and later-on,
while the Sun Grid Engine system is in operation, will be used to store the current
cluster configuration and all further data that needs to be spooled to disk.

By default, <codine_root> is located in /usr/CODINE. If this is changed, Sun Grid
Engine administrators or users must set the environment variable CODINE_ROOT to
the new location before running commands. Use a path name that is a correct

Chapter 2 Installation and Administration Guide 43

reference on all hosts. For example, if the file system is mounted using automounter,
set CODINE_ROOT to /usr/CODINE, not /tmp_mnt/usr/CODINE. Throughout this
document we will use <codine_root> when referencing the installation directory.

<codine_root> is the top level of the Sun Grid Engine directory tree. Each Sun Grid
Engine component in a cell (see section “Cells” on page 48) needs read access to
<codine_root>/ <cell>/common on start up. The root user on the master and shadow
master hosts also need write access to this directory.

For ease of installation and administration it is recommended that this directory is
readable on all hosts you intend to execute the Sun Grid Engine installation
procedure on. You may, for example, select a directory available via a network file
system (like NFS). If you choose to select filesystems local to the hosts you will have
to copy the installation directory to each host before you start the installation
procedure for the particular machine.

Spool Directories Under the Root Directory

On the Sun Grid Engine master host spool directories are maintained under
<codine_root>/<cell>/spool/gmaster and
<codine_root>/<cell>/spool/schedd.

On each execution host a spool directory called
<codine_root>/<cell>/spool/<exec_host> is maintained. This directory does not
need to be exported to other machines.

Directory Organization

Decide what the Sun Grid Engine directory organization will be (for example, a
complete tree on each workstation, directories cross mounted, a partial directory tree
on some workstations) and where each Sun Grid Engine root directory,
<codine_root>, will be located.

Note — Since a change of the installation directory and/or the spool directories
basically requires a new installation of the system (although all important
information from the previous installation can be preserved), the user should
carefully select a suitable installation directory upfront.

By default, the Sun Grid Engine installation procedure will install the Sun Grid
Engine system, manuals, spool areas and the configuration files in a directory
hierarchy (figure 2-1 on page 45) under the installation directory. If you accept this
default behavior, you should install/select a directory which allows the access
permissions described in section “File Access Permissions”.

44 Sun Grid Engine * July 2001

You can move the spool areas to other locations after the primary installation (see
section “Cluster Configuration” on page 70 for the required parameter configuration
changes). You are also free to move the binaries, libraries and the manuals
(subdirectories bin, 1ib, man and doc) to arbitrary locations (just make sure that the
search and manual path variables are set properly).

=] Balrog
2] codsl =] @ Bilbur
§E-CT 3d party |1 Fangorn
ED api (22 grnaster
-7 bin

E-{] catman
Iﬂ{:l ckpt

-] corba
L:JD default
-1 common

EI{:l Balrog
=77 Bilbur
-] Fangom
El{:l grnasher
-] doc
-] examples
F-[] locale
-] man
F-] mpi
-1 pum
-1 gmon
- s
F-C
G- wtilbin =]

FIGURE 2-1 Sample directory hierarchy

Disk Space Requirements

The Sun Grid Engine directory tree has certain fixed disk space requirements. They
are:

m 40 MB for the installation kit (including documentation) without any binaries.
m Between 10 and 15 MB for each set of binaries, except for the architecture Cray,
where the binaries consume approximately 35 MB.

In addition, we recommend providing the following disk space for Sun Grid Engine
log files

m 30-200 MB for the master host spool directories depending on the size of the
cluster
m 10-20 MB for each execution host.

Chapter 2 Installation and Administration Guide 45

46

Note = The spool directories of the master host and the execution hosts are
configurable and do not have to reside under <codine_root> (where they are located
by default). Changing the location of the spool directories should be done after the
primary installation (see section “Cluster Configuration” on page 70).

Installation Accounts

You have the possibility to install Sun Grid Engine either under the root account or
under an unprivileged (e.g. your own) account. The consequence of installing under
an unprivileged account is that this installation will only allow for that particular
user to run Sun Grid Engine jobs. Access will be denied to all other accounts.
Installing under the root account resolves this restriction, however root permission is
required for the complete installation procedure.

File Access Permissions

If you install as root, you may have a problem to configure root read /write access for
all hosts on a shared file system and thus you may have problems to put
<codine_root> onto a network wide file system. You can force Sun Grid Engine to run
the entire file handling of all Sun Grid Engine components through a non-root
administrative user account (called codine, for example). Thus you only need
read /write access to the shared root file system for this particular user. The Sun Grid
Engine installation procedure will ask whether you want file handling under an
administrative user account. Only if you answer with Yes and provide a valid user
id, file handling will be performed via this user id. Otherwise, the user id under
which you run the installation procedure will be used.

You have to make sure in all cases that the account used for file handling has
read /write access on all hosts to the Sun Grid Engine root directory. Also, the
installation procedure assumes that the host from which you will read in the Sun
Grid Engine distribution media can access this directory.

Network Services

Determine whether your site’s network services are defined as a NIS (Network
Information Services) file or local to each workstation in /etc/services. If your
site uses NIS, find out the NIS server host so that you can add entries to the services
NIS map.

Sun Grid Engine ¢ July 2001

Master Host

This is the host from which Sun Grid Engine is controlled. It runs the master
daemon, cod_gmaster. The master host is central to Sun Grid Engine’s operation,
so it should:

m be a stable platform,

m not be excessively busy with other processing,

m have at least 20 Mbytes of unused main memory to run the Sun Grid Engine
daemons,

m (optional) have the Sun Grid Engine directory, <codine_root>, local to it to cut
down on network traffic.

Shadow Master Hosts

These hosts back up cod_gmaster’s functionality in case the master host or the
master daemon fails. To be a shadow master host, a machine must:

m run cod_ shadowd.

m share cod_gmaster’s status, job, and queue configuration information that is
logged to disk. In particular, the shadow master hosts need read /write root access
to the cod_gmaster’s spool directory and to the <codine_root>/<cell>/common
directory.

m the <codine_root>/<cell>/common/shadow masters file contains a line
defining the host as a shadow master host.

The shadow master host facility is activated for a host as soon as these conditions are
met. So you do not need to restart Sun Grid Engine daemons to make a host into a
shadow host

Execution Hosts

These hosts run the jobs that are submitted to Sun Grid Engine. You will run an
installation script on each execution host.

Administrative Hosts

Sun Grid Engine operators and managers perform administrative tasks such as
reconfiguring queues or adding Sun Grid Engine users from these hosts. The master
host installation script automatically makes the master host an administrative host.

Chapter 2 Installation and Administration Guide 47

48

Submit Hosts

Sun Grid Engine jobs may be submitted and controlled from submit hosts. The
master host installation script automatically makes the master host a submit host.

Cells

You may set up Sun Grid Engine as a single cluster or a collection of loosely coupled
clusters called cells. The COD_CELL environment variable indicates the cluster being
referenced. When Sun Grid Engme is installed as a single cluster, COD_CELL is not
set and the value default is assumed for the cell value.

User Ids

In order for Sun Grid Engine to verify that users submitting jobs have permission to
submit them and to use the execution hosts they need, users ids must be identical on
the submit and execution hosts involved. This requirement may necessitate changing
user ids on some machines.

Note — The user ids on the master host are not relevant for permission checking and
do not have to match or even do not have to exist.

Queues

Plan the queue structure that meets your site’s needs. This means determining what
queues should be placed on which execution hosts, whether you need queues for
sequential, interactive, parallel and other job types, how many job slots are needed
in each queue, and other queue configuration decisions.

It is also possible for the Sun Grid Engine administrator to let the installation
procedure create a default queue structure, which is suitable for getting acquainted
with the system and as starting point for later tuning.

Note — Despite the directory Sun Grid Engine is installed to, all settings created by
the Sun Grid Engine installation procedure can be changed during operation of the
system on the fly.

In case you are already familiar with Sun Grid Engine or you previously have
decided on the queue structure you want to impose on your cluster, you should not
allow the installation procedure to install a default queue structure for you. But

Sun Grid Engine ¢ July 2001

instead, you should prepare a document specifying that queue structure and you
should proceed to section "Configuring Queues" on page 75 directly after completing
the installation process.

Installation Plan

Please write down your installation plan in a table similar to the one included below
before you begin with the installation.

Parameter Value

codine_root

master host

shadow master
hosts

execution hosts

administrative
hosts

submit hosts

TABLE2-1 Template form to be filled in prior to Installation

You should now ensure that the file system(s) and directories that will contain the
Sun Grid Engine distribution and the spool and configuration files are set up
properly. Please set the access permissions as defined above.

Reading the Distribution Media

Sun Grid Engine is distributed either on CD-ROM or as archive file through Internet
download. Please ask your system administrator or refer to your local system
documentation for how to access CD-ROMs. The CD-ROM distribution contains a

Chapter 2 Installation and Administration Guide 49

50

file with a tape archive (tar format) and several README files for direct access. The
Web distribution is also provided in tar file format eventually compressed with
compress (extension .z) or with gzip (extension .gz). Please uncompress the file
(use uncompress or gunzip) before proceeding with the next step.

Provide access to the distribution media and login to a system preferably with direct
connection to a file server. Create the installation directory as described in section
“The Installation Directory <codine_root>" to read in the Sun Grid Engine
installation kit. Make sure that the access permissions for the installation directory
are set properly.

Now, execute the following procedure from the command prompt:

$ cd install_dir

% tar -xvpf distribution_source

where install_dir is the pathname of the installation directory and distribution_source
is either the name of the uncompressed tape archive file on hard disk or CD-ROM.
This will read in the Sun Grid Engine installation kit.

Installing the Master Host

Login to the master host as root. If the directory where the installation kit resides is
visible from the master host, cd to the installation directory. If the directory is not
visible and cannot be made visible, create a local installation directory on the master
host and copy the installation kit to the local installation directory via the network
(e.g. by using f£tp or rcp). Afterwards cd to the local installation directory. Now
execute the following instruction:

[)

% ./inst_codine -m

This will initiate the master installation procedure. You will be asked several
questions and may be forced to execute some administrative actions. The questions
and the action items should be self-explanatory.

Note — It is recommended to have a second terminal session active to execute
administrative tasks.

Sun Grid Engine ¢ July 2001

The master installation procedure creates the appropriate directory hierarchy
required by cod_gmaster and cod_schedd. The procedure starts up the Sun Grid
Engine components cod_commd, cod_gmaster and cod_schedd on the master
host. The master host is also registered as host with administrative and submit
permission.

If you feel that something went wrong you can abort and repeat the installation
procedure at any time.

Installing Execution Hosts

In order to start the execution host installation, login as root to the execution host. As
for the master installation either copy the installation kit to a local installation
directory or use a network installation directory. cd to the installation directory and
execute:

[)

% ./inst _codine -x

This will initiate the execution host installation procedure. The behavior and
handling of the execution host installation procedure is very similar to the one for
the master host. Please follow the same directions as given in section "Installing the
Master Host" on page 50.

Note — You may use the master host also for execution of jobs. You just need to
carry out the execution host installation for the master machine.

Note = If you use a very slow machine as master host and/or if your cluster is
considerably large, it is recommended to use the master machine for the master task
only.

The execution host installation procedure creates the appropriate directory hierarchy
required by cod_execd. The procedure starts up the Sun Grid Engine components
cod_commd and cod_execd on the execution host.

Chapter 2 Installation and Administration Guide 51

Installing Administration and Submit Hosts

The master host is implicitly allowed to execute administrative tasks and to submit,
monitor and delete jobs. It does not require any kind of additional installation as
administration or submit host. As opposed to this, pure administration and submit
hosts simply require registration with the commands:

% gconf -ah admin_host_namel,...]

[)

% gconf -as submit_host_namel,...]

The commands need to be executed from an administrative host (e.g. the master
host) and by an administrative account (e.g. the super user account).

Please refer to section "Sun Grid Engine Daemons and Hosts" on page 56 for more
details and other means to configure the different host types.

Veritying the Installation

First make sure that the Sun Grid Engine daemons are running. In order to look for
the cod_gmaster, cod_schedd and cod_commd daemons on the master machine,
login to the master host and execute the UNIX command ps -ax if the master host
runs a BSD based UNIX or ps -ef if the master host's UNIX is SYSV based. Parse
through the output of ps and look for the string cod_gmaster. If you do not find
lines (in the BSD case) looking for example like:

14673 pl S < 2:12 /usr/CODINE/bin/sun4/cod commd
14676 pl S < 4:47 /usr/CODINE/bin/sun4/cod_gmaster
14678 pl S < 9:22 /usr/CODINE/bin/sun4/cod_schedd

or (in the SYSV case) like:

root 439 1 0 Jun 22 ? 3:37 /usr/CODINE/bin/sgi/cod commd
root 442 1 0 Jun 22 ? 3:37 /usr/CODINE/bin/sgi/cod gmaster
root 446 1 0 Jun 22 ? 3:37 /usr/CODINE/bin/sgi/cod schedd

one or multiple of the Sun Grid Engine daemons required on the master host are not
running on this machine (you can look into the file
<codine_root>/<cell>/common/act_gmaster_name whether you really are on the
master host). You can try to restart the daemons by hand. Section "Sun Grid Engine
Daemons and Hosts" on page 56 describes how to proceed.

52 Sun Grid Engine ¢ July 2001

In order to look for the daemons required on the execution machines, login to the
execution hosts the Sun Grid Engine execution host installation procedure was run
on. Again execute ps and look for the string cod_execd in the output. If you do not
find lines like (in the BSD case):

14685 pl S < 1:13 /usr/CODINE/bin/sun4/cod_ commd
14688 pl S < 4:27 /usr/CODINE/bin/sun4/cod_execd

or (in the SYSV case) like:

root 169 1 0 Jun 22 ? 2:04 /usr/CODINE/bin/sgi/cod_commd
root 171 1 0 Jun 22 ? 7:11 /usr/CODINE/bin/sgi/cod execd

one or multiple daemons required on the execution host are not running. Again
section "Sun Grid Engine Daemons and Hosts" on page 56 describes how to restart
the daemons by hand.

If both the necessary daemons run on the master and execution hosts the Sun Grid
Engine system should be operational. You can check if Sun Grid Engine accepts
commands by simply typing:

[)

% gconf -sconf

from the command line when logged into either the master host or another
administrative host (do not forget to include the path where you installed the Sun
Grid Engine binaries into your standard search path). This gconf command
displays the current global cluster configuration (see section “Cluster Configuration”
on page 70).

If this command fails, most probably either your CODINE_ROOT environment
variable is set inappropriately or gconf fails to contact the cod_commd associated
with cod_gmaster. In this case, you should check whether the script files
<codine_root>/<cell>/common/settings.csh or
<codine_root>/<cell>/common/settings. sh set the environment variable
COMMD_PORT. If so, please make sure that the environment variable COMMD PORT
is set to that particular value before you try the above command again. If the
COMMD_PORT variable is not used in the settings files, the services database (e.g.
/etc/services or the NIS services map) on the machine you executed the
command must provide a cod_commd entry. If this is not the case, please add such
an entry to the machine’s services database and give it the same value as is
configured on the Sun Grid Engine master host. Then retry the gconf command.

Before you start submitting batch scripts to the Sun Grid Engine system, please
check if your sites standard and your personal shell resource files (.cshrc,
.profile or .kshrc) contain inconvenient commands like stty (batch jobs do not

Chapter 2 Installation and Administration Guide 53

have a terminal connection by default and, therefore, calls to stty will result in an
error). An easy way to do this is to login to the master host and to execute the
command:

[)

$ rshan_exec_host date

an_exec_host means one of the already installed execution hosts you are going to use
(you should check on all execution hosts if your login and/or home directories differ
from host to host). The rsh command should give you an output very similar to the
date command executed locally on the master host. If there are any additional lines
containing error messages, the reasons for the errors must be removed prior to be
able to run a batch job successfully.

For all command interpreters you can check on an actual terminal connection before
you execute a command like tty. The following is a Bourne-/Korn-Shell example
how to do this:

tty -s
if [$? = 0]; then
stty erase “H

fi

The C-Shell syntax is very similar:

tty -s
if ($status = 0) then
stty erase “H

endif

Note — The leading tty -s is an exception as it causes no problems with batch
execution.

Now you are ready to submit batch jobs. First you should try to submit one of the
example scripts contained in the directory <codine_root>/examples/jobs. To
submit them, just use the command:

% gsub script_path

54 Sun Grid Engine ¢ July 2001

and use the Sun Grid Engine gstat command to monitor the job’s behavior (please
refer to the Sun Grid Engine User’s Guide for more information about submitting and
monitoring batch jobs). As soon as the job has finished execution please check your
home directory for the redirected stdout/stderr files <script_name> . e<job_id> and
<script_name> . o<job_id> with <job_id> being a consecutive unique integer number
assigned to each job.

In case of problems, please see section “Trouble Shooting” on page 158.

Architectural Dependencies

Any difference in functionality depending on the operating system architecture Sun
Grid Engine runs on is documented in files starting with the string arc_depend
in the directory <codine_root>/doc . The remainder of the file name indicates
the operating system architectures to which the comments in the files apply.

Master and Shadow Master
Configuration

The shadow master hostname file <codine_root>/<cell>/common/shadow_masters
contains the name of the primary master host (the machine the Sun Grid Engine
master daemon cod_gmaster is initially running on) and the so called shadow
master hosts. The format of the master hostname file is as follows:

m The first line of the file defines the primary master host.
m The following lines specify the shadow master hosts, one per line.

The order of appearance of the (shadow) master hosts is significant. If the primary
master host (the first line in the file) fails to proceed, the shadow master defined in
the second line will take over. If this one fails also, the one defined in the third line
is on duty and so forth.

In order to prepare a host as Sun Grid Engine shadow master the following
requirements must be met:

m A shadow master host needs to run cod_shadowd.

m The shadow master hosts need to share cod_gmaster’s status information, job
and queue configuration logged to disk. In particular the (shadow) master hosts
need read /write root access to the master’s spool directory and to the directory
<codine_root>/<cell>/common.

Chapter 2 Installation and Administration Guide 55

m The shadow master hostname file has to contain a line defining the host as
shadow master host.

As soon as these requirement are met, the shadow master host facility is activated
for this host. No restart of Sun Grid Engine daemons is necessary to activate the
feature.

The automatic failover start of a cod_gmaster on a shadow master host will take
some time (in the order of one minute). Meanwhile you will get a corresponding
error message whenever a Sun Grid Engine command is executed.

Note — The file <codine_root>/<cell>/common/act _gmaster contains the name of
the host actually running the cod_gmaster daemon.

In order to be able to start a shadow cod_gmaster Sun Grid Engine must be sure
that either the old cod_gmaster has terminated or that it will terminate without
performing actions interfering with the just started shadow cod_gmaster. Under
very rare circumstances this is impossible. In these cases a corresponding error
message will be logged to the messages logfile of the cod_shadowds on the shadow
master hosts (see section “Trouble Shooting” on page 158) and any attempts to open
a tcp connection to a cod_gmaster daemon will permanently fail. If this occurs,
Please make sure, that no master daemon is running and restart cod_gmaster
manually on any of the shadow master machines (see section “Killing and Restarting
Daemons” on page 69).

56

Sun Grid Engine Daemons and Hosts

Classification

Sun Grid Engine hosts are classified into four groups, depending on which Sun Grid
Engine daemons are running on the system and how the hosts are registered at
cod_gmaster:

1. Master host:

The master host is central for the overall cluster activity. It runs the master
daemon cod_gmaster. cod_gmaster controls all Sun Grid Engine components
such as queues and jobs and maintains tables about the status of the components,
about user access permissions and the like. Section "Installation" on page 42
describes how to initially set up the master host and section "Master and Shadow
Master Configuration” on page 55 shows how dynamic master host changes can

Sun Grid Engine ¢ July 2001

be configured. The master host usually runs the Sun Grid Engine scheduler
cod_schedd. The master host requires no further configuration other than
performed by the installation procedure.

2. Execution hosts:

Execution hosts are nodes having permission to execute Sun Grid Engine jobs.
Therefore, they are hosting Sun Grid Engine queues and run the Sun Grid Engine
execution daemon cod_execd. An execution host is initially set up by the
execution host installation procedure as described in section "Installing Execution
Hosts" on page 51).

3. Administration hosts:

Permission can be given to other hosts than the master host to carry out any kind
of administrative activity in Sun Grid Engine. Administrative hosts are set up
with the command gconf -ah hostname (see the gconf manual page for
details).

4. Submit hosts:

Submit hosts allow for submitting and controlling batch jobs only. In particular a
user being logged into a submit host can submit jobs via gsub, can control the job
status via gstat or run Sun Grid Engine's OSF/1 Motif graphical user's interface
gmon. Submit hosts are set up with the command gconf -as hostname (see the
gconf manual page for details)

Note — A host may belong to more than one of the above described classes.

Note — The master host is an administrative and submit host by default.

Configuring Hosts

Sun Grid Engine maintains object lists for all types of hosts except for the master
host. In the case of the administrative and submit hosts these lists simply provide
the information whether or not a host has administrative or submit permission. In
the case of the execution host object, further parameters, such as the load
information as reported by the cod_execd running on the host is stored there as
well as load parameter scaling factors to be provided by the Sun Grid Engine
administrator.

The following sections explain how to configure the different host objects with the
help of the Sun Grid Engine OSF/Motif graphical user’s interface gmon and from
the command-line.

Chapter 2 Installation and Administration Guide 57

58

The GUI administration is provided by a set of host configuration dialogues which
are invoked by pushing the Host Configicon button in the gmon main menu. The
available dialogues are the administration host configuration (see figure 2-2), the
submit host configuration (see figure 2-3) and the execution host configuration (see
figure 2-4). The dialogues can be switched by using the selection list button at the
top of the screen.

The gconf command provides the command-line interface for the host object
management.

Administrative Hosts

The Administration Host Configuration dialogue is opened upon selecting
Administration Host in the tab widget on the top of the screen. The
administration host configuration dialogue is opened by default when the Host
Config button is pressed for the first time.

With this dialogue hosts can be declared from which administrative Sun Grid Engine
commands are allowed. The selection list in the center of the screen displays the
hosts already declared to provide administrative permission. An existing host can be
deleted from this list by clicking on its name with the left mouse button and by
pushing the Delete button at the bottom of the dialogue. A new host can be added
by entering its name to the Hostname input window and pressing the Add button
afterwards.

Sun Grid Engine ¢ July 2001

QMON *** Host Configuration

gk'-‘“““‘ﬁ Host Configation

Administration Host] Submit Host Execution Host ,ﬁ-ﬂ;i I

Host

BALROG . genias.de
BOLEK .genlas.de
OWAIN.genlas.de

fanzorn.genias.de

FIGURE2-2 Administration Host Configuration

The command-line interface for maintaining the list of administration hosts is
provided by the following options to the gconf command:

gconf -ah hostname

add administrative host. Adds the specified host to the list of administrative hosts.

gconf -dh hostname

delete administrative host. Deletes the specified host from the list of administrative
hosts.

Chapter 2 Installation and Administration Guide 59

60

gconf -sh

show administrative hosts. Displays a list of all currently configured administrative
hosts.

Submit Hosts

The Submit Host Configuration dialogue is opened upon selecting Submit Host in
the tab widget on the top of the screen. Hosts can be declared from which jobs can be
submitted, monitored and controlled. No administrative Sun Grid Engine
commands are allowed from these hosts unless they are declared to be
administrative hosts also (see “Administrative Hosts” on page 58). The selection list
in the center of the screen displays the hosts already declared to provide submit
permission. An existing host can be deleted from this list by clicking on its name
with the left mouse button and by pushing the Delete button at the bottom of the
dialogue. A new host can be added by entering its name to the Hostname input
window and pressing the Add button afterwards.

Sun Grid Engine ¢ July 2001

IJHI]N =* Host Configuration

Administration Host Submit Host] Execution Host

Host

|ARAGORN . genias . de
BALROG.genlas.de
BOLEK .genlas.de
OURIN.genlas.de
OWAIN.genlas.de
EOWYN.genias.de
GLOIM.genlas.de
LIS.genias.de
ORI.zenias.de
SARUMAN.genias.de

fangzorn.genias.de

FIGURE 2-3 Submit Host Configuration

The command-line interface for maintaining the list of submit hosts is provided by
the following options to the gconf command:

gconf -as hostname

add submit host. Adds the specified host to the list of submit hosts.
gconf -ds hostname

delete submit host. Deletes the specified host from the list of submit hosts.

Chapter 2 Installation and Administration Guide 61

gconf -ss

show submit hosts. Displays a list of the names of all hosts currently configured to
provide submit permission.

Execution Hosts

The Execution Host Configuration dialogue is opened upon selecting Execution
Host in the tab widget on the top of the screen. Sun Grid Engine execution hosts can
be configured from this dialogue. No administrative or submit commands are
automatically allowed from these hosts unless they are declared to be administrative
or submit hosts also (see “Administrative Hosts” on page 58 and “Submit Hosts” on
page 60).

The Hosts selection list displays the execution hosts already defined. The currently
configured load scaling factors, the access permissions and the resource availability
for consumable and fixed complex attributes associated with the host are displayed
in the Load Scaling, the Access Attributes and the Consumable/Fixed
Attributes display windows for the selected execution host. Please refer to
section “The Complexes Concept”, section “User Access Permissions” and section
“Load Parameters”, for details on complex attributes, user access permissions and
load parameters.

An existing host can be deleted from the list of execution hosts by clicking on its
name with the left mouse button and by pushing the Delete button at the button
column on the right side of the dialogue. The execution daemon cod_execd on an
execution host can be shut down by pushing the Shutdown button for any selected
host. A new host can be added or modified pushing the Add or Modify button in
the button column. This will open the dialogue displayed in figure 2-5 on page 65
and described below.

62 Sun Grid Engine ¢ July 2001

] GHON === Host Configuration

k st Host Configaration
\"\

Ahunstaontiost | Simshoet | (oot gl
Hosts Load Scaling Mﬁdﬂy
| ARAGORN .genias.de Gerbual dves .50 [I o
BIFUR.genlas.de virtual total 0.50

BILEUR .genias.de virtual used 0.50 Shutdayn

BOLEK .genlas.de
OURIN.genlas.de

¥ Done

EREE

OWAIN.genlas.de Bl : Help
EOWYN.genias . de Access Attributes -
FRODO.genlas.de Access R

GAMDALF .genlas.de ¥hccess NONE

GLOIMN.genlas.de
LIS.zenias.de
SARUMAN . genlas . de
fangorn.genias.de i - ——
Consunables/Fixed Attributes
glohal : el : =

pamcrash 2 3

FIGURE 2-4 Execution Host Configuration

The dialogue to add a new execution host or modify the configuration of an existing
one allows for modification of all attributes associated with the host. The name of
the execution host is displayed or can be added in the Host input window. Scaling
factors can be defined if Scaling is selected in the tab widget of the dialogue (see
figure 2-5 on page 65).

Chapter 2 Installation and Administration Guide 63

All available load parameters are displayed in the Load column of the Load
Scaling table and the corresponding definition of the scaling can be found in the
Scale Factor column. The Scale Factor column can be edited. Valid scaling
factors are positive floating point numbers in fixed point or scientific notation.

If Consumables/Fixed Attributes is selected in the tab widget, the complex
attributes associated with the host can be defined (see figure 2-7 on page 66). The
complexes (see section “The Complexes Concept”) associated with the host are the
global and the host complex or the administrator defined complexes attached to the host
via the Complex Selection area on the left bottom of the dialogue. Available
administrator defined complexes are displayed on the left and they can be attached
or detached via the red arrows. The Complex Config icon button opens the top
level complex configuration dialogue in case you need further information on the
current complex configuration or if you want to modify it.

The Consumable/Fixed Attributes table in the right bottom area of the
dialogue enlists all complex attributes for which a value currently is defined. The list
can be enhanced by clicking to the Name or Value button at the top. This will open
a selection list with all attributes attached to the host (i.e. the union of all attributes
configured in the global, the host and the administrator defined complexes attached
to this host as described above). The attribute selection dialogue is shown in figure
2-7 on page 66. Selecting one of the attributes and confirming the selection with the
Ok button will add the attribute to the Name column of the Consumable/Fixed
Attributes table and will put the pointer to the corresponding Value field.
Modifying an existing value can be achieved by double-clicking with the left mouse
button on the Value field. Deleting an attribute is performed by first selecting the
corresponding table line with the left mouse button. The selected list entry can be
deleted either by typing CTRL-D or by clicking the right mouse button to open a
deletion box and confirming the deletion.

64 Sun Grid Engine * July 2001

[l Add/Modify Exec Host

fost |BILBUR geriss.de '

FIGURE 2-5 Modify Load Scaling

Chapter 2 Installation and Administration Guide 65

[[F] Add/Modify Exec Host

licenses

. |PILBUR. genias de '

FIGURE 2-6 Modify Consumable/Fixed Attributes

66 Sun Grid Engine ¢ July 2001

'Ejﬁehctanﬂem

mem_used
mastran
ne_load_avg

np_load_long
nie_load_medium
np_load_short

UM _pToc

PEFMas

FIGURE 2-7 Available complex attributes

If User Access is selected in the tab widget (figure 2-8 on page 67), the access
permissions to the execution host can be defined based on previously configured
user access lists (section “Configure User Access Lists with gmon”).

[Add/Modity Exec Host
Host | BILBUR genias e | ok |
Scaling Consumahles/Fived Attrihutes User Access Caneel
Access Lists Allow Access to
' idevel
A Allow Access
~ Deny Access
-
Deny Access to

g

FIGURE 2-8 Modify User Access

The command-line interface for maintaining the list of execution hosts is provided
by the following options to the gconf command:

gconf -ae [exec_host_template]

add execution host. Brings up an editor (default vi or corresponding to the
$EDITOR environment variable) with an execution host configuration template. If
the optional parameter exec_host_template (the name of an already configured
execution host) is present the configuration of this execution host is used as
template. The execution host is configured by changing the template and saving to
disk. See the host_conf manual page in the Sun Grid Engine Reference Manual for a
detailed description of the template entries to be changed.

gconf -de hostname

delete execution host. Deletes the specified host from the list of execution hosts. All
entries in the execution host configuration are lost.

Chapter 2 Installation and Administration Guide 67

68

gconf -me hostname

modify execution host. Brings up an editor (default vi or corresponding to the
$EDITOR environment variable) with the configuration of the specified execution
host as template. The execution host configuration is modified by changing the
template and saving to disk. See the host_conf manual page in the Sun Grid
Engine Reference Manual for a detailed description of the template entries to be
changed.

gconf -Me filename

modify execution host. Uses the content of filename as execution host configuration
template. The configuration in the specified file must refer to an existing execution
host. The configuration of this execution host is replaced by the file content. This
gconf option is useful for off-line execution host configuration changes, e.g. in
cron jobs, as it requires no manual interaction.

gconf -se hostname

show execution host. Show the configuration of the specified execution host as
defined in host conf.

gconf -sel

show execution host list. Display a list of host names which are configured to be
execution hosts.

Monitoring Execution Hosts with ghost

The ghost command provides a convenient way to retrieve a quick overview on the
execution host status. Various options are provided to customize the information
retrieved and the output format displayed.

In its standard form:

[

% ghost

Sun Grid Engine ¢ July 2001

an output similar to the following will be printed:

TABLE2-2 Sample ghost Output

HOSTNAME ARCH NPROC LOAD MEMTOT MEMUSE SWAPTO SWAPUS
global - - - - - - -
BALROG.genias.de solaris6 2 0.38 1.0G 994 .0M 900.0M 891.0M
BILBUR.genias.de solaris 1 0.18 96.0M 70.0M 164.0M 9.0M
DWAIN.genias.de irixé6 1 1.13 149.0M 55.8M 40.0M 0.0
GLOIN.genias.de osf4 2 0.05 768.0M 701.0M 1.9G 13.5M
SPEEDY.genias.de alinux 1 0.08 248.8M 60.6M 125.7M 232.0K
SARUMAN.genias.de solaris 1 0.11 96.0M 77.0M 192.0M 9.0M
FANGORN.genias.de linux 1 2.01 124.8M 49.9M 127.7M 4.3M

Please refer to the ghost manual page in the Sun Grid Engine Reference Manual for a
description of the output format and for further options.

Killing and Restarting Daemons

In order to immediately halt the Sun Grid Engine system on your cluster you can use
the commands:

)

% qconf -kej

[)

% gqconf -ks

[

% gconf -km

The first command will kill all currently active jobs and bring down all Sun Grid
Engine execution daemons.

Note = If replacing that command by gconf -ke, the Sun Grid Engine execution
daemons are aborted, but the active jobs are not cancelled. Jobs which finish while
no cod_execd is running on that system are not reported to cod_gmaster until
cod_execd is restarted again. The job reports are not lost, however.

The second command will shutdown the Sun Grid Engine scheduler cod_schedd.
The third command finally will force the cod_gmaster process to terminate. You
will need Sun Grid Engine manager or operator privileges for these operations (see
section "Managing User Access" on page 117).

Chapter 2 Installation and Administration Guide 69

If you have running jobs and you want to wait with the shutdown procedure of Sun
Grid Engine until the currently active jobs are finished you can use the command
below for each queue before executing the gconf sequence described above.

% gmod -d queue_name

The gmod disable command prevents new jobs from being scheduled to the disabled
queues. You should then wait with the killing of the daemons until no jobs run in the
queues any longer.

To restart daemons on a particular machine you will have to login to that machine as
root and execute the procedure:

% <codine_root>/<cell>/common/codine5

This script will look for the daemons normally running on this host and
subsequently start the corresponding ones.

70

Cluster Configuration

The Basic Cluster Configuration

The basic Sun Grid Engine cluster configuration is a set of information configured to
reflect site dependencies like valid paths for programs such as mail or xtermand to
influence the Sun Grid Engine behavior. There is a global configuration, which is
provided by for the Sun Grid Engine master host as well as every host in the Sun
Grid Engine pool. In addition, the Sun Grid Engine system may be configured to use
a configuration local to every host to override particular entries in the global
configuration.

The sge_conf manual page in the Sun Grid Engine Reference Manual contains a
detailed description of the configuration entries. The Sun Grid Engine cluster
administrator should adapt the global and local configurations to the site’s needs
directly after the installation and keep it up to date afterwards.

Sun Grid Engine ¢ July 2001

Displaying the Basic Cluster Configurations

The Sun Grid Engine command to display the current configuration is the show
configuration option of the gconf program. The following are a few examples (see
the Sun Grid Engine Reference Manual for a detailed description):

)

% gconf -sconf

[)

% gconf -sconf global

[

% gconf -sconf <host>

The first two commands are equivalent and will display the global configuration.
The third command will display the host’s local configuration.

Modifying the Basic Cluster Configurations

The Sun Grid Engine command to change the cluster configurations may be used by
Sun Grid Engine administrators only. Examples for such commands are:

[)

% gconf -mconf global

[)

% gconf -mconf <host>

The first command example will modify the global configuration while the second
example operates on the local configuration of the specified execution or master
host.

Chapter 2 Installation and Administration Guide 71

Displaying the Cluster Configuration with gmon

IJMI]N =*x [Cluster Configuration

=

Cluster Configuration

Hnst
Fan

Inlubdl

Bunflguratlum

orn.genlas gmaster_ spaal dir
|execd_spool_dir
|gsi_common_dir
{binary_path
mailer

| xterm

| load_sensor
|prolog

lepilog
|shell_start_mode
|login_shells
{mim_uid

min_gid
[user_lists

[xuser_lists

N]

/v0l2/codine50/default/sponl /gl =

SvolZ/codineblsdefault/spool
SwolZ2/codineS0sdefault/commans
AvwolZ2/codineS0/bin

Shindmall

Ausrsbindxll =term

none

none

none

poslx_compllant
sh,ksh,csh,tcsh

0

0]

none

none

-
hEn

A

ele
ﬁws

Help

HiH

FIGURE 2-9 Cluster Configuration dialogue

The Cluster Configuration dialogue as displayed in figure 2-9 on page 72 is
opened by clicking with the left mouse button on the Cluster Configuration
icon button in the gmon main menu. By selecting a particular configuration for a
host in the Host selection list on the left side of the screen, the dialogue can be used
to display the current configuration for that host or to delete the selected
configuration when pressing the Delete button. Selecting the special name global
in the host selection list displays the global configuration.

The configurations are displayed in the format which is described in the sge_conf
manual page. Use the button Modify to modify the selected global or host local
configuration. Use the Add button to add a new configuration for a specific host.

72 Sun Grid Engine ¢ July 2001

Modifying global and Host Configurations
with gmon

Cluster Settings
Configuration for Host = |
|glObal | Ca.ncell
Gl Setings] Advanced Settings '
Master Spool Dir | vol2ico dineSOrdefaulyispooliqmaster Min UID NJ.n GID Finished Jobs
. — = = 0 i |50
Execd Spool Dix [, v i eS0idefaniispoct TR

051 Cormon Dir
Binary Path
Mailer

Xterm

Load Sensor
Admin User
Adwin Mail
Prolog

Epilog

Login Shells

Shell Start Mode

posix complant i |

e 000100

log info |

6] oo

" Stat Log Time

vol2/codineS0bin

— 120000 o]
fizisl User Lists
| husrbinX1 1/ term
none
none bR
none
none
;HUTLE
sh,ksh, cah tesh

Log Level

o

i

m

FIGURE 2-10 Cluster Settings dialogue General Settings

The Cluster Settings dialogue is opened upon clicking to the Modify or Add
button in the Cluster Configuration dialogue described in section "Displaying
the Cluster Configuration with gmon" on page 72. It provides the means for
changing all parameters of a global or host local configuration. All entry fields are
only accessible if the global configuration is changed, i.e. if the the selected host was
global and if Modify was pressed. If a regular host is modified, its actual
configuration is reflected in the dialog and only those parameters can be modified
which are feasible for host local changes. If a new host local configuration is added,
the dialogue entries will be empty fields.

Chapter 2

Installation and Administration Guide 73

The Advanced Settings tab (figure 2-11 on page 74) shows a corresponding
behavior depending on whether a global, host local or new configuration is changed.
It provides access to more rarely used cluster configuration parameters.

Cluster Settings
_ _Co_nﬁgurat_‘lon_ for Hqst B |
global
= cance]l
General Settings Advanced Settings —I

Additional Parameters

Master Parameters none

celiedi i atos Flush_submit_sec=0 flush_finish_sec=0

{KEEP_ACTIVE-falsd

Execd Parameters

Shepherd Command none

Defanlt Domain none

_Interactive Parameters

HICEe S |Jusr/sbin/in.telnetd

Qlogin Command telnet
rsh Daemon |
rsh Gormmand

rlogin Daemon

rlogin Command

FIGURE 2-11 Cluster Settings dialogue Advanced Settings

After finishing the modifications, the Ok button on the right upper corner will
register the modified configuration. Pressing Cancel discards any changes. The
dialogue is closed in both cases.

Please refer to the sge_conf manual page for a complete description of all cluster
configuration parameters.

74 Sun Grid Engine ¢ July 2001

Configuring Queues

Sun Grid Engine queues are containers for different categories of jobs and provide
the corresponding resources for concurrent execution of multiple jobs belonging to
the same category. Jobs will not wait in Sun Grid Engine queues but start running
immediately as soon as they are dispatched. The Sun Grid Engine scheduler’s job
pending list is the only waiting area for Sun Grid Engine jobs.

Configuring Sun Grid Engine queues will register the queue attributes with
cod_gmaster. As soon as they are configured, they are instantly visibly to the
whole cluster and to all Sun Grid Engine users on all hosts belonging to the Sun
Grid Engine pool.

Configuring Queues with gmon

The Queue Configuration dialogue is opened upon pushing the Add or Modify
button in the Queue Control dialogue. The Queue Control dialogue and its
facilities to monitor and manipulate the queue status are described in section
"Controlling Queues with gqmon" on page 232 of the Sun Grid Engine User’s Guide.

If the Queue Configuration dialogue is opened for the first time it shows the
general parameters form (see "Configuring General Parameters" on page 76).

The queue to be affected by the desired operation is displayed or defined in the
Queue and Hostname windows in the upper screen region. If a queue is to be
modified an existing queue has to be selected in the Queue Control dialogue
before the Queue Configuration dialogue is opened. A queue name and a host
on which the queue resides must be defined if a new queue is going to be added.

To increase the ease of use of the Queue Configuration dialogue, three buttons
are available directly below the Hostname window: The Clone button, which
allows for the import of all parameters of an existing queue via a queue selection list,
the Reset button, which loads the configuration of the template queue and the
Refresh button, which loads the configuration of other objects which were
modified while the Queue Configuration dialogue was open (see section
“Queue Configuration “User Complexes”” on page 83 and "Queue Configuration
“User Access” parameters” on page 85 for further details concerning the Refresh
button).

The Ok button on the right upper corner of the Queue Configuration dialogue
registers the changes with cod_qmaster, while the Cancel button below discards
any changes. Both buttons close the dialogue.

Chapter 2 Installation and Administration Guide 75

76

Nine parameter sets are available to define a queue: General (see "Configuring
General Parameters" on page 76), Execution Method (see section “Configuring
Execution Method Parameters” on page 77), Checkpointing (see “Configuring
Execution Method Parameters” on page 77), Load/Suspend Thresholds (see
“Configuring Load and Suspend Thresholds” on page 79), Limits (see
“Configuring Limits” on page 81), Complexes (see “Configuring User Complexes”
on page 82), Subordinates (“Configuring Subordinate Queues” on page 84), User
Access (see “Configuring User Access” on page 85) and Owners (see "Configuring
owners" on page 86). The desired parameter set can be selected via the queue
parameter tab widget.

Configuring General Parameters

If the General parameter set is selected, the parameter set definition region looks as
displayed in figure 2-12 below. The fields offered allow for setting the following
parameters:

Sequence number of the queue.

Processors - a specifier for the processor set to be used by the jobs running in that

queue. For some operating system architectures this can be a range (s.th. like

1-4,8,10) or just an integer identifier of the processor set. See the

arc_depend_*.asc files in the doc directory of your Sun Grid Engine

distribution for more information.

Temporary directory path.

Default command interpreter (Shell) to be used to execute the job scripts.

A calendar attached to the queue defining on-duty and off-duty times for the
ueue.

%he time waited between delivery of SIGUSR1/SIGUSR2 notification signals and

suspend/kill signals (Notify).

The nice value with which to start the jobs in this queue (0 means use system

default).

The number of jobs to be allowed to execute concurrently in the queue (job slots).

The type of the queue and of the jobs being allowed to execute in this queue.

Multiple selections are feasible.

The shell Start Mode, i.e. the mode in which to start the job script.

The Initial State in which a newly added queue comes up or in which the

queue is restored if the cod_execd running on the queue host gets restarted.

The queue’s default rerun policy to be enforced on jobs which have been aborted

e.g. due to system crashes. The user may overwrite this policy by the gsub -r

option or the job submission dialogue (see figure 3-8 on page 181 of the Sun Grid

Engine User’s Guide).

Please refer to the queue_conf manual page for detailed information on these
parameters.

Sun Grid Engine ¢ July 2001

D Queue Configuration: Modify

gmg
GLOIN genias de |

00.00:60

FIGURE 2-12 Queue Configuration “General” parameters

Configuring Execution Method Parameters

If the Execution Method parameter set is selected, the parameter set definition
region looks as displayed in figure 2-13 below. The fields offered allow for setting
the following parameters:

m A queue specific prologue and epilogue script executed with the same
environment as the job before the job script is started and after it is finished
respectively.

m A start/suspend/resume/terminate method overwriting Sun Grid Engine’s
default methods for these applying these actions to jobs.

Please refer to the queue_conf manual page for detailed information on these
parameters.

Chapter 2 Installation and Administration Guide 77

78

E Queue Configuration: Modify

_&ccnm: Queue Configuration: Modify

Quene ok |
gloin.g s
Hostiarme —
‘C:xLOINgemasde

Clone | Reset | Refresh |

Complexes | Subordinates 1 User Access | Ovwners

General Configuration Execution Method] Checkpointing Load/Suspend Thresholds Limits

Prolog [‘[]
Epilog
Starter Method

Suspend Method
Besume Method

Terminate Method

FIGURE 2-13 Queue Configuration “Execution Method” parameters

Configuring Checkpointing Parameters

If the Checkpointing parameter set is selected, the parameter set definition region
looks as displayed in figure 2-14 below. The fields offered allow for setting the
following parameters:

m The load thresholds initiating a job migration. A threshold value can be supplied
for any load parameter. The currently configured thresholds are displayed in the
Migration Load Thresholds box. An existing threshold can be selected and
changed by double-clicking with the left mouse button to the corresponding
Value field. To add new thresholds click to the Name or Value button at the top.
This will open a selection list with all attributes attached to the queue (see "The
Complexes Concept" on page 88 for details). The attribute selection dialogue is
shown in figure 2-7 on page 66. Selecting one of the attributes and confirming the
selection with the Ok button will add the attribute to the Name column of the
Migration Load Thresholds table and will put the pointer to the
corresponding Value field. A selected list entry can be deleted either by typing
CTRL-D or by clicking the right mouse button to open a deletion box and
confirming the deletion.

Sun Grid Engine ¢ July 2001

m The time waited between a checkpoint signal and a kill signal (MaxMigrTime). If
set, enforces a checkpoint being generated at the time of migration.

m The allowed time for a checkpointing job to be spent outside checkpointing
applications (MaxNoMigr).

m The periodical checkpoint interval (MinCpuTime).

Please refer to the queue_conf manual page for detailed information on these
parameters.

EJ' Queue Configuration: Modify

l. | __ Reresh |

_:
CE I
|

FIGURE 2-14 Queue Configuration “Checkpointing” parameters

Configuring Load and Suspend Thresholds

If the Load/Suspend Thresholds parameter set is selected, the parameter set
definition region looks as displayed in figure 2-15 below. The fields offered allow for
setting the following parameters:

m The Load Thresholds and the Suspend Thresholds tables, which define overload
thresholds for load parameters and consumable complex attributes (see "The
Complexes Concept" on page 88). Overload in the case of load thresholds results
in preventing the queue from receiving further jobs by Sun Grid Engine.
Exceeding one or more suspend thresholds causes suspension of jobs in the queue

Chapter 2 Installation and Administration Guide 79

to reduce the load. The currently configured thresholds are displayed in the
tables. An existing threshold can be selected and changed by double-clicking with
the left mouse button to the corresponding Value field. To add new thresholds
click to the Name or Value button at the top. This will open a selection list with
all valid attributes attached to the queue. The attribute selection dialogue is
shown in figure 2-7 on page 66. Selecting one of the attributes and confirming the
selection with the Ok button will add the attribute to the Name column of the
corresponding threshold table and will put the pointer to its Value field. A
selected list entry can be deleted either by typing CTRL-D or by clicking the right
mouse button to open a deletion box and confirming the deletion.

m The number of jobs which are suspended per time interval to reduce the load on
the system which hosts the configured queue.

m The time interval between suspension of further jobs in case suspend thresholds
are still exceeded.

Please refer to the queue_conf manual page for detailed information on these
parameters.

D Queue Eonliguration: Modify

gomg
GLOIM genias de |

FIGURE 2-15 Queue Configuration “Load Thresholds”

80 Sun Grid Engine ¢ July 2001

Configuring Limits

If the Limits parameter set is selected, the parameter set definition region looks as
displayed in figure 2-16 below. The fields offered allow for setting the following
parameters:

m The hard and soft limits which are to be imposed on the jobs running in the queue.

To change a value of a limit double-click to the Value field of the limit entry. Double
clicking to a Value field twice opens convenient input dialogues for either Memory
or Time limit values (see figure 2-17 and figure 2-18).

Please refer to the queue_conf and setrlimit manual page for detailed
information on the individual limit parameters and their interpretation for different
operating system architectures.

Rueue Configuration: Modify

& s Queue Configuration: Modify

Cuene ok
[ound =
- Cancel
Hosmame —]
{GLOIN genas.de Help

Clone | Reset | Refresh |
Complexes [Subordinates i User Access | Oviners
Cine el N el B e L e Theaaa .

Drouble click on walnes to change limits

Hard Limit Value Soft Limit [Vatue |
Welldock Timne {sec) 24:00:00 iy Walldlack Time (sec) Al
CPU Time (sec) 12:00:00 CPU Time 08:00:00

File Size (Byte) INFIMITY File Size. (Byte) INEIMITY

Data Size (Byte) INFIMNITY Drara Size (Byre) IMNEIMNITY

Btack Size (Byte) INFIMITY Stack Bize (Byte) INFINITY
Corefile Bize (Byte) INFIMITY Corefile Bize (Byte) INEIMITY
Resident Ser Size (Byte) i Regident Set Size (Byte) INEIMNITY £

FIGURE 2-16 Queue Configuration “Limits”

Chapter 2 Installation and Administration Guide 81

B Erter 5 nemory valus for “Resident Set Size (Byte)™:

GByte {(1024x102dx102d 3}

Ok Canzel i

FIGURE 2-17 Memory input dialogue

El Time
Enter a time value for “Mallclock Time {sec)”:
£ Infinity
= =k a &
Day Hour Minute Second

Ok Cancel Haln

FIGURE 2-18 Time input dialogue

Configuring User Complexes

If the User Complexes parameter set is selected, the parameter set definition region
looks as displayed in figure 2-19 below. The fields offered allow for setting the
following parameters:

m The set of user defined complexes (see “User Defined Complexes” on page 93)
being attached to the queue. The red arrows in the center of the Complex
Selection box allow to attach and detach a user defined complex from/to the
queue.

m A value definition for selected attributes from the set of complexes parameters
available for this queue. The available complex parameters are assembled per
default from the global complex, the host complex and from the attached user
defined complexes. Attributes are either consumable or fixed parameters. The
definition of a queue value defines a capacity managed by the queue in the case
of a consumable attribute or simply a fixed, queue specific value in the case of
fixed attributes (see section “The Complexes Concept” on page 88 for further
details). The attributes, for which values are explicitly defined are displayed in
the Consumable/Fixed Attributes table. An existing attribute can be
selected and changed by double-clicking with the left mouse button to the

82 Sun Grid Engine ¢ July 2001

corresponding Value field. To add new attribute definitions click to the Name or
Value button at the top. This will open a selection list with all valid attributes
attached to the queue. The attribute selection dialogue is shown in figure 2-7 on
page 66. Selecting one of the attributes and confirming the selection with the Ok
button will add the attribute to the Name column of the attribute table and will
put the pointer to its Value field. A selected list entry can be deleted either by
typing CTRL-D or by clicking the right mouse button to open a deletion box and
confirming the deletion.

Please refer to the queue_conf manual page for detailed information on these
parameters.

The Complex Configuration dialogue (see “Complex Configuration dialogue
“licenses”” on page 94 for example) is opened upon clicking on the Complex
Configicon button. The current complexes configuration can be checked or
modified before user defined complexes are attached or detached to a queue.

Queue Configuration: Modify

_&canm: Queue Configuration: Modify

Quene ok |
:_:-gloin.q - = .
: Cang
Hostname
| GLOIN genias de SE
Clone I Reset I Refresh |
General Configuration Execution Method Checkpointing LoadfSuspend Thresholds Limits
Complexes] Subordinates User Access Ovmers
Complex Selecti __Co hle/Fixed Attrihutes
Aorailable Complexes Artached Complexes
e ssen A R Tosd e
licenses
permas 10

FIGURE 2-19 Queue Configuration “User Complexes”

Chapter 2 Installation and Administration Guide 83

Configuring Subordinate Queues

If the Subordinates parameter set is selected, the parameter set definition region
looks as displayed in figure 2-20 below. The fields offered allow for setting the
following parameters:

m The queues which are subordinated to the configured queue. Subordinated queues
are suspend if the configured queue becomes busy and are unsuspended if the
configured queue is no longer busy. For any subordinated queue the number of
job slots can be configured which at least has to be occupied in the configured
queue to trigger a suspension. If no job slot value is specified, all slots need to be
filled to trigger suspension of the corresponding queue.

Please refer to the queue_conf manual page for detailed information on these
parameters.

Use the subordinate queue facility to implement high priority and low priority
queues as well as stand-alone queues.

EJ' Bueue Configuration: Modify

FIGURE 2-20 Queue Configuration “Subordinates”

84 Sun Grid Engine ¢ July 2001

Configuring User Access

If the User Access parameter set is selected, the parameter set definition region
looks as displayed in figure 2-21 below. The fields offered allow for setting the
following parameters:

m The user access lists being attached to the allow or deny lists of the queue. Users
or user groups belonging to access lists which are included in the allow list have
access to the queue. Those being associated with the deny list may not access the

queue. If the allow list is empty access is unrestricted unless explicitly stated
otherwise in the deny list.

Please refer to the queue_conf manual page for detailed information on these
parameters.

The Access List Configuration dialogue (see “User Access Permissions” on
page 122) is opened upon clicking on the icon button in the middle bottom of the

screen.
Queue Configuration: Modify E

k SADINE Queue Configuration: Modify

Cuene ok |
:_.gloi.n.q - = .
1 Cane
Hostname
| GLOTM genias de Help
Clune | Reset | Refresh |
General Configuration [Execution Method] Checkpointing [Load/Suspend Thresholds [Limits
Complexes [Subordinates [User Access] Orimers
Access Lists Allow Access to
E h | crash
I A~ Allow Access
dewvel
~ Deny Access
1| !
s Deny Access to
= e

el

FIGURE 2-21 Queue Configuration “User Access” parameters

Chapter 2 Installation and Administration Guide 85

86

Configuring Owners

If the Owners parameter set is selected, the parameter set definition region looks as
displayed in figure 2-22 below. The fields offered allow for setting the following
parameters:

m The list of queue owners. An owner of a queue is given permission to
suspend/unsuspend or disable/enable the queue. All feasible user accounts are
valid values to be added to the queue owner list. To delete an user account from
the queue owner list select it in the Owner List window and click on the
garbage bin icon in the right lower corner of the dialogue.

Please refer to the queue_conf manual page for detailed information on these
parameters.

Ej Queue Configuration: Modify

clomgsissse
| | |

FIGURE 2-22 Queue Configuration “Owners”

Sun Grid Engine ¢ July 2001

Configuring Queues from the Command-line

The queue configuration is maintained by the following gconf command options:
qgconf -aq [queue_name]

add queue. Brings up an editor (default vi or corresponding to the SEDITOR
environment variable) with a queue configuration template. If the optional
parameter queue_name is present the configuration of this queue is used as template.
The queue is configured by changing the template and saving to disk. See the
queue_conf manual page in the Sun Grid Engine Reference Manual for a detailed
description of the template entries to be changed.

gconf -Aqg file_name

add queue. Uses the file file_name to define a queue. The definition file might have
been produced by gconf -sq queue_name (see below).

gconf -cqg queue_namel,...]
clean queue. Cleans the status of the specified queue(s) to be idle and free from
running jobs. The status is reset without respect to the current status. The option is

useful for eliminating error conditions, but should not be used in normal operation
mode.

gconf -dg queue_namel,...]

delete queue. Deletes the queue(s) specified in the argument list from the list of
available queues.

gconf -mqg queue_name

modify queue. Modifies the specified queue. Brings up an editor (default vi or
corresponding to the SEDITOR environment variable) with the configuration of the
queue to be changed. The queue is modified by changing the configuration and
saving to disk.

gconf -Mq file_name

modify queue. Uses the file file_name to define the modified queue configuration.
The definition file might have been produced by gconf -sq queue_name (see below)
and subsequent modification.

gconf -sqg [queue_namel,...]]
show queue. Either displays the default template queue configuration (if no

arguments are present) or the current configuration of the queues enlisted in the
comma separated argument list.

Chapter 2 Installation and Administration Guide 87

gconf -sql

show queue list. Displays a list of all currently configured queues.

88

The Complexes Concept

The definition of complexes provides all pertinent information concerning the
resource attributes a user may request for a Sun Grid Engine job via the gsub or
galter -1 option and for the interpretation of these parameters within the Sun
Grid Engine system.

Complexes also build the framework for Sun Grid Engine’s so called Consumable
Resources facility, a feature allowing for the definition of cluster global, host specific
or queue related attributes which identify a resource with an associated capacity.
Availability of resources in combination with the requirements of Sun Grid Engine
jobs will be taken into account during the scheduling process. Sun Grid Engine will
also perform the bookkeeping and capacity planning required to prevent from
oversubscription of consumable resources. Examples for typical consumable
attributes are available free memory, unoccupied licenses of a software package, free
disk space or available bandwidth on a network connection.

In a more general sense, Sun Grid Engine complexes are used as a means for
describing the intended interpretation of queue, host and cluster attributes. The
description includes the attribute name, a shortcut which can be used to reference it,
the value type (e.g. STRING or TIME) of an attribute, a pre-defined value being
assigned to the complex attribute, a relation operator used by the Sun Grid Engine
scheduler cod_schedd, a requestable flag which determines whether the attribute
may be requested for a job by a user or not, a consumable flag which identifies the
attribute as consumable attribute if set and a default request value taken into
account for consumable attributes if jobs do not explicitly specify their request for
such an attribute.

The gmon complex configuration dialogue shown below illustrates how complex
attributes can be defined. It can be opened either by pushing the Complex
Configuration icon button in the gmon main menu or the corresponding icon
button in the User Complexes queue and host configuration sub-dialogues. It
provides the means for changing the definition of the existing complexes and for
defining new user complexes.

Sun Grid Engine ¢ July 2001

QMON = Complex Configuration

kcnnwz Complex Configuration

Complexes Htmibutes o
globel NAME SHORTCUT TYPE VALUE RELOP REQ _
| host ! = | Wodity
| licenses
! gname g STRING NONE e YES
hostname h HOST unknawn = YES M
| tmpdir tmp STRING NOME == NO Dane
calendar C STRING NONE == YES —J
nriority or INT 0 = NO || Help
SE0_NO seq INT 0 == NO
rerun re INT] mr MO
s_rt s_rt TIME 0:0:0 = MO
hort h_rt TIME 0:0:0 (= YES
S_CpU. S_Cpu TIME 0:0:0 (= N0

FIGURE 2-23 Complex Configuration dialogue “queue”

On the left side of the screen a selection list for all complexes known to the system is
displayed. It can be used if a complex is to be modified or deleted. The desired
operation (Add, Modify or Delete) can be selected with the corresponding
buttons on the right side of the screen. If a new complex is to be created or an
existing complex is modified, the following dialogue is opened.

QMON *** Complex Add/Modify

Mame of Complex gueue Ok

Attributes e
s S Tupe Value Relation Requestahle EonsumableDEFault nces
h_cpu (h_cpu TIME 03030 (= YES N |0:030
Marme Shortenr Type Value Belaton Requestable Consumable Defanlt ;
rerun re iNT 0 == O . MO 0 i
st st TIHE 01010 <= (i [01010 R
'h s hort TIME 03040 = YES ND 030:0
'=_cpu =_cpu ‘TIHE .0 1020 . :0 2020 i
mmm_m -
= data z_data MEMORY il S

FIGURE 2-24 Complex Add/Modify dialogue

Chapter 2 Installation and Administration Guide 89

90

The name of the complex has to be entered or is displayed in the Name of Complex
input window at the top. The complex attributes can be modified in the complex
definition table by selecting a line with the left mouse button. The selected entry will
be displayed in the definition windows and selectors at the top of the Attributes
box. Changing the definition and pressing the Add button will update the changes in
the definition table.

A new entry can be added by filling out the definition windows and using the
selectors and then pressing the Add button. No line in the attributes table should be
selected when adding new items.

The Load and Save buttons can be used to load and save complex configurations
from and to regular files. A file selection box is opened to select the files. The
Delete button can be used to delete selected lines in a complex configuration.

Please refer to the complex manual page for details on the meaning of the rows and
columns in the table. The Ok button in the upper right corner of the screen will
finally register the new/changed complex with cod_gmaster.

Complex Types

The Sun Grid Engine complexes object integrates four different types of complexes:

The Queue Complex
It is referenced by the special name queue.

In its default form it contains a selection of parameters in the queue configuration as
defined in queue conf. The main purpose of the queue complex is to define how
these parameters are to be interpreted and to provide a container for further
attributes which are intended to be available for all queues. The queue complex thus
can be extended by user defined attributes.

If the queue complex is referenced in context with a particular queue, the
corresponding configuration values of the queue replace the attribute values (they
overwrite the value column) in the queue complex.

If, for example, the queue complex is setup for a queue called big, the value column
for the queue complex attribute gname, which carries the default value unknown
(see figure 2-23 on page 89), is set to big.

This implicit value setting can be overwritten by using the complex values
parameter in the queue configuration (see section “Configuring Queues” on page
75). This is usually done for so called Consumable Resources (see section “Consumable
Resources” on page 96). For the virtual memory size limit, for example, the queue
configuration value h_vmem would be used to limit the amount of total occupied

Sun Grid Engine ¢ July 2001

memory per job, while a corresponding entry in the complex_values list would
define the total available amount of virtual memory on a host or assigned to a
queue.

If the administrator adds attributes to the queue complex, their value in association
with a particular queue is either defined via the complex_values parameter of
that queue or the value column in the queue complex configuration is used by
default.

The Host Complex

It is referenced by the special name host and contains the characteristics definition
of all attributes which are intended to be managed on a host basis (figure 2-25 on
page 92). The standard set of host related attributes consists of two categories, but it
may be enhanced likewise the queue complex described above. The first category is
built by several queue configuration attributes which are particularly suitable to be
managed on a host basis. These attributes are:

m slots

m seven

m h_vmem
m s_fsize
m h_fsize

(please refer to queue_conf for details).

Note — Defining these attributes in the host complex is no contradiction to having
them also in the queue configuration. It allows maintaining the corresponding
resources on a host level and at the same time on a queue level. Total virtual free
memory (h_vmem) can be managed for a host, for example, and a subset of the total
amount can be associated with a queue on that host.

The second attribute category in the standard host complex are the default load
values. Every cod_execd periodically reports load to cod_gmaster. The reported
load values are either the standard Sun Grid Engine load values such as the CPU
load average or load values defined by the Sun Grid Engine administration (see
section “Load Parameters” on page 113). The characteristics definition for the
standard load values is part of the default host complex, while administrator defined
load values require extension of the host complex.

The host complex commonly is not only extended to include non-standard load
parameters, but also to manage host related resources such as the number of
software licenses being assigned to a host or the available disk space on a host local
filesystem.

Chapter 2 Installation and Administration Guide 91

If the host complex is associated with a host or a queue on that host, a concrete value
for a particular host complex attribute is determined by either

m the queue configuration in the case of the queue configuration derived attributes,

m a reported load value or

m the explicit definition of a value in the complex_values entry of the
corresponding host configuration (see section “Configuring Hosts” on page 57).

If none of the above is available (e.g. the value is supposed to be a load parameter,
but cod_execd does not report a load value for it), the value field in the host
complex configuration is used.

The total free virtual memory attribute h_vmem, for example, is defined in the queue
configuration as limit and is also reported as a standard load parameter. The total
available amount of virtual memory on a host and attached to a queue on that host
may be defined in the complex_values lists of that host and that queue
configuration. Together with defining h vmem as consumable resource (see section
“Consumable Resources” on page 96) this allows to efficiently exploit memory of a
machine without risking memory oversubscription often resulting in reduced system
performance caused by swapping.

Note = Only the Shortcut, Value, Relation, Requestable, Consumable
and Default columns may be changed for the system default load attributes. No
default attributes should be deleted.

QMON == Complex Configuration

kconmi Canplex Configuratian

Complezes Attributes Aji;ﬁ[;.l

& NAME SHORTCUT TYPE YALUE RELOP REQ) MJﬁfy
| il

| Licenses :

{ arch a STRING none == YES i

quene num_groc n INT 1 == HO M
load_avg la DOUBLE 99.99)= HO Done |
load_short ls DOUBLE 99.99 2= MO L HESS
load_medium Im DOUBLE 59.99 bE HO Help
load_long 11 DOUBLE 99.99)= HO
np_load_avg nla DOUBLE 99.493)= HO
np_load_short nls DOUBLE 59,95 o= NO
np_load_medium nlm DOUBLE 55.95)= HO
np_load_long nll DOUBLE 99.98)= NO

FIGURE 2-25 Complex Configuration dialogue “host”

92 Sun Grid Engine ¢ July 2001

The Global Complex:

It is referenced by the special complex name global.

The entries configured in the global complex refer to cluster wide resource
attributes, such as available network bandwidth of a file server or the free disk space
on a network wide available filesystem (figure 2-26 on page 93). Global resource
attributes can also be associated with load reports, if the corresponding load report
contains the GLOBAL identifier (see section “Load Parameters” on page 113). Global
load values can be reported from any host in the cluster. There are no global load
values reported by Sun Grid Engine by default and hence there is no default global
complex configuration.

Concrete values for global complex attributes are either determined by global load
reports, by explicit definition in the complex_values parameter of the global
host configuration (see section “Configuring Hosts” on page 57) or in association
with a particular host or queue and an explicit definition the corresponding
complex values lists. If none of the above is the case (e.g. a load value has not yet
been reported), the value field in the global complex configuration is used.

QMON == Complex Conliguration

KCQD'NE Complex Configuration
Comple_xes : Atftributes

; NAME SHORTCUT TYPE YALUE RELOP REQ

| host !

licenses | chared-disk sd MEMORY O (= YIS

mene banduidth b INT 0 (= YIS

FIGURE 2-26 Complex Configuration dialogue “global”

User Defined Complexes

By setting up user defined complexes the Sun Grid Engine administration has the
ability to extend the set of attributes managed by Sun Grid Engine while restricting
the influence of those attributes to particular queues and/or hosts. A user complex is
just a named collection of attributes and the corresponding definition as to how

Chapter 2 Installation and Administration Guide 93

ﬂ (MON === Complex Configuration

%cnnw: Complex Configwration

these attributes are to be handled by Sun Grid Engine. One or more of these user
defined complexes can be attached to a queue and/or host via the complex_list
queue and host configuration parameter (see section “Configuring Queues” on page
75 and "Configuring Hosts" on page 57). The attributes defined in all assigned
complexes become available to the queue and the host respectively in addition to the
default complex attributes.

Concrete values for user defined complexes in association with queues and hosts
have to be set by the complex values parameter in the queue and host
configuration or otherwise the value field of the user complex configuration is
used.

As an example let the following user defined complex 1icenses be defined:

Complexes
global
host
flicenses
quene

Attnbutes
‘ HAME SHORTCUT TYPE VALUE RELOP REQ
DETMES am INT 40 (= TES
nastran na INT 10 0= YES
pam-crash ac INT 15 i TES

FIGURE 2-27 Complex Configuration dialogue “1icenses”

And let for at least one or multiple queues the 1icenses complex be added to the
list of associated user defined complexes as show in the queue configuration User
Complexes sub-dialogue displayed below (please see section “Configuring
Queues” on page 75 for details on how to configure queues):

94 Sun Grid Engine ¢ July 2001

Ej Queue Configuration: Modify

g

e
_ Cme | _ Rest | _ Refesh |

licenses

FIGURE 2-28 User Complexes “queue” Configuration

Then the displayed queue is configured to manage up to 10 licenses of the software
package permas. Furthermore, the 1icenses complex attribute permas becomes
requestable for Sun Grid Engine jobs as expressed in the Available Resources
list in the Requested Resources sub-dialogue of the submit dialogue shown
below (see section “Submitting Sun Grid Engine Jobs” on page 175 of the Sun Grid
Engine User’s Guide for details on how to submit jobs).

Chapter 2 Installation and Administration Guide 95

[l aMON

FIGURE 2-29 Requested Resources submit sub-dialogue

Alternatively the user could submit jobs from the command-line and request
licenses attributes as follows:

% gsub -1 pe=1 permas.sh

Note — The pm shortcut could have been used instead of the full attribute name
permas.

As a consequence of such a configuration and similar job requests, the only queues
being eligible for these jobs would be the ones which are associated with the user
defined 1icenses complex, which have permas licenses configured and available.

Consumable Resources

Consumable resources, also called consumables, are an efficient means to manage
limited resources such as available memory, free space on a file system, network
bandwidth or floating software licenses. The total available capacity of a consumable
is defined by the Sun Grid Engine administrator and the consumption of the
corresponding resource is monitored by Sun Grid Engine internal bookkeeping. Sun

96 Sun Grid Engine ¢ July 2001

Grid Engine accounts for the consumption of this resource for all running jobs and
ensures that jobs are only dispatched if the Sun Grid Engine internal bookkeeping
indicates enough available consumable resources.

Consumables can be combined with default or user defined load parameters (see
section “Load Parameters” on page 113), i.e. load values can be reported for
consumable attributes or conversely the Consumable flag can be set for load
attributes. The Sun Grid Engine consumable resource management takes both the
load (measuring availability of the resource) and the internal bookkeeping into
account in this case, and makes sure that neither of both exceeds a given limit.

To enable consumable resource management the total capacity of a resource has to be
defined. This can be done on a cluster global, per host and per queue basis while
these categories may supersede each other in the given order (i.e. a host can restrict
availability of a cluster resource and a queue can restrict host and cluster resources).
The definition of resource capacities is performed with the complex values entry
in the queue and host configuration (see host_conf and queue_conf as well as
"Configuring Queues" on page 75 and "Configuring Hosts" on page 57). The
complex_values definition of the global host specifies cluster global
consumable settings. To each consumable complex attribute in a complex_values
list a value is assigned which denotes the maximum available amount for that
resource. The internal bookkeeping will subtract from this total the assumed
resource consumption by all running jobs as expressed through the jobs’ resource
requests.

Setting Up Consumable Resources

Only numeric complex attributes (those with type INT, MEMORY and TIME) can be
configured as consumables. To switch on the Sun Grid Engine consumable
management for an attribute, you first have to set the CONSUMABLE flag for it in
the complex configuration as depicted in "Complex Configuration dialogue
“virtual_free”" on page 98 for the virtual free memory resource.

Chapter 2 Installation and Administration Guide 97

98

GMON == Complex Add/Modify

Mame of Complex |host Ok
Attributes BT

o e Tupe Vol Relation Requestable Eonsumablenerault .
wirtual_free wf MEMOR'Y 1t} 4= IES TS 116G
Mane Shorteut Type Valne Relation Requestsble Consumable Default :
susp_fres =F MEMORY 0 = MO MO 0 e
suap_total s MEMORY 0 [z o Mo o 5o
virtusl_total vt MEMORY 0 = o [0 B
mem_uzed T _HEHDRY IMFIMITY 3= MO MO (0]
suap_uzed s MEMORY IFINITY 3= o O 0 T

FIGURE 2-30 Complex Configuration dialogue “virtual free”

Then, for each queue or for each host you want Sun Grid Engine to do the required
capacity planning, you have to define the capacity in a complex_values list. An
example is shown in figure "Execution Host Configuration “virtual_free”" on
page 99 where 1 Gigabyte of virtual memory is defined as capacity value of the

current host.

The virtual memory requirements of all jobs running concurrently on that host (in
any queue) will be accumulated and subtracted from the capacity of 1 Gigabyte to
determine available virtual memory. If a job request for virtual free exceeds the
available amount, the job will not be dispatched to a queue on that host.

Note = Jobs can be forced to request a resource and thus to specify their assumed
consumption via the force value of the Requestable parameter (see figure 2-30 on
page 98).

Note — A default resource consumption value can be pre-defined by the
administrator for consumable attributes not explicitly requested by the job (see
figure 2-30 on page 98 - 200 Megabytes are set as default). This is meaningful only if
requesting the attribute is not enforced as explained above.

Sun Grid Engine ¢ July 2001

Add/Modify Exec Host %]

Host Ifangom.gmias.de

Scaling Consunables/Fiked Attrites] User Access Cansel
Canplex Selecti [« hles/Fixed Attributes
Available Complexes Attached Complexes Name Value |
licenses b vinen 16

FIGURE 2-31 Execution Host Configuration “virtual free”

Examples

Example 1: Floating Software License Management

Suppose you have the software package PAM-CRASH in use in your cluster and you
have access to 10 floating licenses, i.e. you can use PAM-CRASH on every system as
long as the total active invocations of the software do not exceed the number 10. The
goal is to configure Sun Grid Engine in a way which prevents from scheduling
PAM-CRASH jobs as long as all 10 licenses are occupied by other running
PAM-CRASH jobs.

With Sun Grid Engine consumable resources this can be achieved easily! First, you
need to add the number of available PAM-CRASH licenses as a consumable resource
to the global complex configuration as shown in figure 2-32 on page 100.

Chapter 2 Installation and Administration Guide 99

GMON == Complex Add/Modify

Mame of Complex |global Ok
Attributes R
Ho S Type Vb RFelation Reguestable Eonsumablene]cault
pam—-crash Po INT 14] 4= FORCED YES 11
Mame Bhorteut Type Yalue Relation Requestable Consumable Default i
L | L : L : L Delete
Load
Save

FIGURE 2-32 Complex Configuration dialogue “pam-crash”

The name of the consumable attribute is set to pam-crash and pc can be used as
short-cut in the galter, gselect, gsh, gstat or gsub -1 option instead. The
attribute type is defined to be an integer counter. The setting of the Value field is
irrelevant for consumable resources as they receive their value from the global, host
or queue configurations via the complex_values lists (see below). The
Requestable flag is set to FORCED to indicate that users have to request how
much PAM-CRASH licenses their job will occupy when submitting it. The
Consumable flag finally defines the attribute to be a consumable resource while the
setting of Default is irrelevant since Requestable is set to FORCED and thus a
request value will be received for this attribute with any job.

To activate resource planning for this attribute and for the cluster the number of
available PAM-CRASH licenses has to be defined in the global host configuration
as displayed in figure 2-33 on page 101. The value for the attribute pam-crash is
set to 10 corresponding to 10 floating licenses.

Note — The table Consumable/Fixed Attributes corresponds to the
complex_values entry described in the host configuration file format
host conf.

100 Sun Grid Engine ¢ July 2001

Add/Modify Exec Host (%]

Host |slotal
Scaling | Conswmahles{Fixed Attributes] User Access Canel
Complex Selecti € hles/Fixed Athdhutes
Aoailable Complexes Attached Complezes Name Value

licenses

o

FIGURE 2-33 Global Host Configuration “pam-crash”

If a user now submits the following job:

% gsub -1 pc=1 pam-crash.sh

it will only get started if less than 10 PAM-CRASH licenses are currently occupied.
The job may run anywhere in the cluster, however, and it will occupy one
PAM-CRASH license for itself throughout its run time.

If one of your hosts in the cluster cannot be included in the floating license, e.g.
because you do not have PAM-CRASH binaries for it, you can simply exclude it
from the PAM-CRASH license management by setting the capacity related to this
host for the consumable attribute pam-crash to 0. This has to be done in the
execution host configuration dialogue as shown for host fangorn in figure 2-34 on
page 102.

Chapter 2 Installation and Administration Guide 101

Add/Modify Exec Host (%]

Host | GLOIN geries de {:’_kl
Scaling | Canswnshles(Fived Attntes] User Access Caneal
Complex Selecti [+ hles/Fixed Athibutes
Aoailable Complexes ~ ;“}Eﬂ%ﬂﬁ .O,rqulfff'.s. oo Vahie |
licenses | S

o

FIGURE 2-34 Execution Host configuration “pam-crash”

Note — The pam-crash attribute is implicitly available to the execution host,
because the attributes of the global complex are inherited to all execution hosts.

Note — Likewise setting the capacity to 0 you could also restrict the number of
licenses to be managed by a particular host as part of all licenses of the cluster to a
certain non-zero value, such as 2. In this case a maximum of 2 PAM-CRASH jobs
could co-exist on that host.

Similarly, you could want to prevent a certain queue from executing PAM-CRASH
jobs, e.g. because it is an express queue with memory and CPU-time limits not
suitable for PAM-CRASH. In this case you just would have to set the corresponding
capacity to 0 in the queue configuration as shown in figure 2-35 on page 103.

Note — The pam-crash attribute is implicitly available to the queue, because the
attributes of the global complex are inherited to all queues.

102 Sun Grid Engine « July 2001

E Queue Configuration: Modily

_ﬁcoum: Queue Configuration: Modify

CGuene or |

;’.}angum.q = = .

! Cane

Hostname

%fangom.genias.de _Igil

Clone | Reset | Rekest |
General Cofigwation ExecutionMethod Checkpainting | Load/Suspend Thresholds ~ Linits
Complexes] Suhordinates 1 User Access [Ovners

Complex Selecti] bhle/Fixed Attributes

Available Complexes Attached Complexes
e - e T s

il licenses

pam-cash |0

FIGURE 2-35 Queue Configuration “pam-crash”

Example 2: Space Sharing for Virtual Memory

To tune a system in a way that performance degradation caused by memory
oversubscription and consequently swapping of a machine is avoided is a common
task for system administrators. Sun Grid Engine can support you in this tasks via the
consumable resources facility.

The standard load parameter virtual_free is designated to report the available
free virtual memory, i.e. the combination of available swap space and the available
physical memory. To avoid swapping, the use of swap space has to be minimized,
i.e. in an ideal case all the memory required by all processes executing on a host
should fit into physical memory.

Sun Grid Engine can guarantee this for all jobs started via Sun Grid Engine given the
following assumptions and configurations:

m virtual_ free is configured as consumable resource and its capacity on each
host is set to the available physical memory (or lower).

m Jobs request their anticipated memory usage and the value requested is not
exceeded during run time.

Chapter 2 Installation and Administration Guide 103

An example for a possible host complex configuration is shown in figure "Complex
Configuration dialogue “virtual_ free”" on page 98 and a corresponding
execution host configuration for a host with 1 Gigabyte of main memory is depicted
in figure "Execution Host Configuration “virtual_free”" on page 99.

Note — The Requestable flag is set to YES in the host configuration example as
opposed to FORCED in the previous example of a global complex configuration. This
means, that users do not have to indicate the memory requirements of their jobs, but
that the value in the Default field is used if an explicit memory request is missing.
The value of 1 Gigabyte as default request in this case means, that a job without
request is assumed to occupy all the available physical memory.

Note — virtual_ free is one of the standard load parameters of Sun Grid Engine.
The additional availability of recent memory statistics will be taken into account
automatically by Sun Grid Engine in the virtual memory capacity planning. If the
load report for free virtual memory falls below the value obtained by Sun Grid
Engine-internal bookkeeping, the load value will be used to avoid memory
oversubscription. Differences in the reported load values and the Sun Grid Engine
internal bookkeeping may occur easily if jobs are started without using Sun Grid
Engine.

If you run a mix of different job classes with typical different memory requirements
on a single machine you might wish to partition the memory of the machine for use
through these job classes. This functionality, frequently called space sharing, can be
accomplished by configuring a queue for each job class and by assigning to it a
portion of the total memory on that host.

In our example, the queue configuration shown in figure figure 2-36 on page 105
would attach half of the total memory available to host fangorn, i.e. 500
Megabytes, to the queue big_f. Hence the accumulated memory consumption of all
jobs executing in queue big_f may not exceed 500 Megabytes. Jobs in other queues
are not taken into account, but the total memory consumption of all running jobs on
host fangorn may still not exceed 1 Gigabyte.

104 Sun Grid Engine « July 2001

B Queue Configuration: Modify

_%coum: Queune Configuration: Modify
Cuene ok |
\fangom.q - =
. anﬂ
Hostname —
E——— _Help |
Clone | Reset | Refresh
Conteal Cantpaenentll O Ecvisn pomod il (0 Cheapimmg il (W Loadisuspent Tieeanrids i (D0 Linits
Complexes] Suhordinates 1 User Access 1 Ovners
Complex Selecti G hle/Fixed Attrihwtes
Available Complexes Arrached Complexes
— ' gt G i Load Valie

licenses

|license

virtmal free |[S00RA

=

FIGURE 2-36 Queue Configuration “virtual free”

Note = The attribute virtual free is available to all queues via inheritance from
the host complex.

Users might submit jobs to a system configured like in our example case in either of
the following forms:

gsub -1 vf£=100M honest.sh
gsub dont_care.sh

o° o

The job submitted by the first command can be started as soon as at least 100
Megabytes of memory are available and this amount will be taken into account in
the capacity planning for the virtual free consumable resource. The second job
will only run if no other job is on the system as it implicitly request all the available
memory. In addition, it will not be able to run in queue big f because it exceeds
the queue’s memory capacity.

Chapter 2 Installation and Administration Guide 105

Example 3: Managing Available Disk Space

Some applications need to manipulate huge data sets stored in files and hence
depend on availability of sufficient disk space throughout their run time. This
requirement is similar to the space sharing of available memory as discussed in the
preceding example. The main difference is that Sun Grid Engine does not provide
free disk space as one of its standard load parameters. This is due to the fact that
disks are usually partitioned into file systems in a site specific way, which does not
allow to identify the file system of interest automatically.

Nevertheless, available disk space can be managed efficiently by Sun Grid Engine
via the consumables resources facility. It is recommended to use the host complex
attribute h_fsize for this purpose for reasons explained later in this section. First,
the attribute has to be configured as consumable resource, for instance as shown in
figure 2-37 on page 106.

QMON == Complex Add/Modify
Name of Complex |host Ok
Attributes :
: Cancel
o e Type Valus Relation Reguestable EonsumableDeFault
‘h_fsize h_fzize HEMORY a = FORCED YES o
HMame Shortent Type Walue Relation Requestable Consumable Drefault
: ; Acddd
h_vmemn h_wnen MEMORY 0 = YES HO 0 i
s fsize s feize MEMORY 0 = YES: HO 0 T
Tele

SYs_hCpUs SNCpUS INT (il = HO HO 0 :

| | | | | | | Load
‘zys_ttimet sttimet TIME 4] 4 HO HO
sys_ttine sttime TIME 0 < Ha HO ;

! ! 1 ! ! | Save

FIGURE 2-37 Complex Configuration dialogue “h_fsize”

If we assume host local file systems, it is reasonable to put the capacity definition for
the disk space consumable to the host configuration as shown in figure 2-38 on
page 107.

106 Sun Grid Engine « July 2001

Add/Modify Exec Host %]

Host !fangom.genias.de Ok

Scaling | Consumahles(Fixed Attributes] User Access Caneel
Complex Selecti [bles/Fixed Attriutes
s Eonlpice e || Neme v |
licenses | T =
h fsize 20G

i
-

o

FIGURE 2-38 Execution Host configuration “h_fsize”

Submitting jobs to a Sun Grid Engine system configured in such a way works
analogously to the previous examples:

% gsub -1 hf=5G big_sort.sh

The reason why the h_fsize attribute has been recommended in this example lies
in the fact that h_fsize also is used as the hard file size limit in the queue
configuration. The file size limit is used to restrict the ability of the jobs to create files
larger than specified during job submission (5 Gigabyte in the example above) or the
corresponding value from the queue configuration if the job does not request the
attribute. The Requestable flag for h_fsize has been set to FORCED in our
example, so a request will always be present.

By using the queue limit as the consumable resource, we automatically gain control
on the requests as specified by the user versus the real resource consumption by the
job scripts. Any violation of the limit will be sanctioned and the job eventually will
be aborted (see the queue_conf and the setrlimit manual pages for details).
This way it can be ensured that the resource requests, on which the Sun Grid Engine
internal capacity planning is based, are reliable.

Note = Some operating systems only provide per process file size limits. In this case
a job might create multiple files with a size up to the limit. On systems which
support per job file size limitation, Sun Grid Engine however uses this functionality
with the h_fsize attribute (see queue_conf for further details).

Chapter 2 Installation and Administration Guide 107

If you expect applications not being submitted to Sun Grid Engine to occupy disk
space concurrently, the Sun Grid Engine internal bookkeeping might not be
sufficient to prevent from application failure due to lack of disk space. To avoid this
problem it would be helpful to receive disk space usage statistics in a periodical
fashion, which would indicate total disk space consumption including the one
occurring outside Sun Grid Engine.

The Sun Grid Engine load sensor interface (see “Adding Site Specific Load
Parameters” on page 114) allows you to enhance the set of standard Sun Grid Engine
load parameters with site specific information, such as the available disk space on a
particular filesystem.

By adding an appropriate load sensor and reporting free disk space for h_fsize
you can combine consumable resource management and resource availability
statistics. Sun Grid Engine will compare job requirements for disk space with the
available capacity derived from the Sun Grid Engine internal resource planning and
with the most recent reported load value. Jobs will only get dispatched to a host if
both criteria are met.

Configuring Complexes

Sun Grid Engine complexes can either be defined and maintained graphically via the
gmon Complex Configuration dialogue shown and explained on page 89 and
following or can be performed from the command-line via the gconf options -Ac,
-ac, -Mc, -mc and -sc. The command:

)

% gconf -sc licenses

prints the nastran complex (as define in figure 2-27 on page 94) to the standard
output stream in the file format as defined in the complex section 5 manual page. A
sample output is shown for the 1icenses complex below:

#name shortcut type value relop requestable consumable default
B o C .
nastran na INT 10 <= YES NO

pam-crash pc INT 15 <= YES YES 1
permas pm INT 40 <= FORCED YES 1
#---- # start a comment but comments are not saved across edits ----------------------

TABLE2-3 gconf -sc sample output

Please refer to the complex manual page for a detailed definition of the format and
the valid value field syntax.

108 Sun Grid Engine « July 2001

While the gconf -Ac and -Mc options take such a complexes configuration file as
an argument, the -ac and -mc options bring up an editor filled in with a template
complex configuration or the configuration of an existing complex for modification.

The meaning of the options is defined as follows:
gconf -Ac, -ac

Add a new complex to the list of available complexes.
gconf -Mc, -mc

Modify an existing complex.

Queue Calendars

Queue calendars define the availability of Sun Grid Engine queues dependent on the
day of the year, the day of the week and/or the day time. Queues can be configured
to change their status at arbitrary points in time. The queue status can be changed to
disabled, enabled, suspended and resumed (unsuspended).

Sun Grid Engine provides the ability to define a site specific set of calendars, each of
which contains arbitrary status changes and the time events at which they occur.
These calendars can be referred to by queues, i.e. each queue may (or may not)
attach a single calendar thereby adopting the availability profile defined in the
attached calendar.

The syntax of the calendar format is described in calendar conf in detail. A few
examples are given below along with a description of the corresponding
administration facilities.

Configuration with gqmon

The queue calendar configuration dialogue (figure 2-39 on page 110) is opened upon
clicking to the Calendar Configicon button in the gmon main menu. The already
available access lists are displayed in the Calendars selection list on the left side of
the screen. The contents of a calendar configuration is displayed in the display
region entitled with Configuration if it is selected by clicking on it with the left
mouse button in the Calendars selection list.

Chapter 2 Installation and Administration Guide 109

A selected calendar can be deleted by pressing the Delete button on the right side
of the screen. Selected calendars can be modified after pushing the Modi£fy button
and new access lists can be added after pushing the Add button. In both cases, the
calendar definition dialogue displayed in figure 2-40 on page 111 is opened and
provides the corresponding means:

The Calendar Name input window either displays the name of the selected
calendar in the case of a modify operation or can be used to enter the name of the
calendar to be declared. The Year and Week input fields allow the definition of the
calendar events using the syntax described in calendar_ conf.

[E] GMON === Calendar Configuration

kcnnm!
Calendars Configuration
rYE'aT“ 25121999 96 .2 199!
Week mon—fri=6-20
=) il

FIGURE 2-39 Calendar Configuration

110 Sun Grid Engine « July 2001

Add/Modify Calendar

‘Calendar Mame 0k

weekend-night :
| Cancel
Example:

Year
1,1,19597,30,3,1997-31,3,1997 .26, 12, 1997 [==zuzpended]

ek
mon—fri=E0-cl=zuspended] sat-sunl=cuspended]

fear
\25,12,1999,26, 12, 1999=on
eek
{mon—fri=b-20

FIGURE 2-40 Add/Modify Calendar

The example calendar configuration above is appropriate for queues which should
be available outside office hours and on weekends. In addition, the christmas
holidays have been defined to be handled like week ends.

See the calendar_conf manual page in the Sun Grid Engine Reference Manual for a
detailed description of the syntax and for further examples.

By attaching a calendar configuration for a queue the availability profile defined by
the calendar is set for the queue. Calendars are attached in the general parameter
queue configuration menu as displayed in figure 2-41 on page 112. The Calendar
input field contains the calendar name to be attached and the icon button next to the
input field opens a selection dialogue with the list of currently configured calendars.
See section "Configuring Queues" on page 75 for further detail on configuring
queues.

Chapter 2 Installation and Administration Guide 111

E] Queue Configuration: Modify

vescatnge (0D
00:00:60 ®

FIGURE 2-41 Queue Configuration “Calendar”

Command-line Configuration

The command-line interface to administer the calendar configuration of your Sun
Grid Engine cluster is provided by several switches to the Sun Grid Engine gconf
command:

gconf -Acal, -acal
add calendar. Adds a new calendar configuration to the Sun Grid Engine cluster. The

calendar to be added is either read from file or an editor with a template
configuration is opened to enter the calendar.

gconf -dcal

delete calendar. Adds a new calendar configuration to the Sun Grid Engine cluster.
The calendar to be added is either read from file (-Acal) or an editor with a
template configuration is opened to enter the calendar (-acal).

112 Sun Grid Engine ¢ July 2001

gconf -Mcal, -mcal

modify calendar. Modifies an existing calendar configuration. The calendar to be
modified is either read from file (-Mcal) or an editor with the previous
configuration is opened to enter the new definition (-mcal).

gconf -scal, -scall

show calendar. Displays an existing calendar configuration (-scal) or prints a list
of all configured calendars (-scall).

Load Parameters

The Default Load Parameters

Per default cod_execd periodically reports several load parameters and the
corresponding values to cod_gmaster. They are stored in the cod_gmaster
internal host object (see section “Sun Grid Engine Daemons and Hosts” on page 56),
however, they are used internally only if a complex attribute with a corresponding
name is defined. Such complex attributes contain the definition as to how load
values have to be interpreted (see section “Complex Types” on page 90 for details).

After the primary installation a standard set of load parameters is reported. All
attributes required for the standard load parameters are defined in the host complex.
Subsequent releases of Sun Grid Engine may provide extended sets of default load
parameters. Therefore, the set of load parameters being reported per default is
documented in the file <codine_root>/doc/load _parameters.asc.

Note = The complex in which load attributes are defined decides about their
accessibility. Defining load parameters in the global complex makes them available
for the entire cluster and all hosts. Defining them in the host complex provides the
attributes for all hosts but not cluster globally. Defining them in a user defined
complex allows to control visibility of the load parameter by attaching or detaching
a user complex to a host.

Note = Load attributes should not be defined in queue complexes as they would be
neither available to any host nor to the cluster.

Chapter 2 Installation and Administration Guide 113

Adding Site Specific Load Parameters

The set of default load parameters may not be adequate to completely describe the
load situation in a cluster, especial with respect to site specific policies, applications
and configurations. Therefore, Sun Grid Engine provides the means to extend the set
of load parameters in an arbitrary fashion. For this purpose, cod_execd offers an
interface to feed load parameters together with the current load values into
cod_execd. Afterwards, these parameters are treated exactly like the default load
parameters. Likewise for the default load parameters (see section “The Default Load
Parameters” on page 113) corresponding attributes need to be defined in a load
complex for the load parameters to become effective.

How to Write Your Own Load Sensors

In order to feed cod_execd with additional load information a so called load sensor
has to be supplied. The load sensor may be a script or a binary executable. In either
case its handling of the standard input and output stream and its control flow must
comply to the following rules:

The load sensor has to be written as infinite loop waiting at a certain point for input
from STDIN. If the string quit is read from STDIN, the load sensor is supposed to
exit. As soon as an end-of-line is read from STDIN a load data retrieval cycle is
supposed to start. The load sensor then performs whatever operation is necessary to
compute the desired load figures. At the end of the cycle the load sensor writes the
result to stdout. The format is as follows:

m A load value report starts with a line containing nothing but the word begin.

m Individual load values are separated by newlines.

m Each load value information consists of three parts separated by colons (“:”) and
containing no blanks.

m The first part of a load value information is either the name of the host for which
load is reported or the special name global.

m The second part is the symbolic name of the load value as defined in the host or
global complex list (see complex (5)in the Sun Grid Engine Reference Manual for
details). If a load value is reported for which no entry in the host or global
complex list exists, the reported load value is not used.

m The third part is the measured load value.

m A load value report

m ends with a line with the word end.

114 Sun Grid Engine « July 2001

A sample Bourne shell script load sensor may look as follows:

#!/bin/sh
myhost=‘uname -n‘
while [1]; do

wait for input
read input
result=38?

if [Sresult != 0]; then
exit 1

fi

if [$input = quit]; then
exit 0

fi

#send users logged in

logins=‘who | cut -f1 -d" " | sort | uniqg | wc -1' | sed "s/* *//®
echo begin

echo "Smyhost:logins:$logins"

echo end

done
we never get here

exit 0

If this example is saved into the file 1oad. sh and executable permission is assigned
to it via chmod, it can be tested interactively from the command-line simply by
invoking load.sh and pressing repeatedly the <return> button of the keyboard.

As soon as the procedure works, it can be installed for any execution host simply by
configuring the path of the load sensor as the 1load_sensor parameter for the
cluster global or the execution host specific configuration (see section “Cluster
Configuration” on page 70 or the sge_conf manual page).

Chapter 2 Installation and Administration Guide 115

The corresponding gmon screen might look as follows:

l [Cluster Settings

—
mstfbin/Ki 1erm '

MSrﬂn calfbindoad. sl{

FIGURE 2-42 Local Configuration with load sensor

The reported load parameter 1logins will be usable, as soon as a corresponding
attribute is added to the host complex. The required definition might look as the last
table entry in the example gmon Complex Configuration screen below.

116 Sun Grid Engine * July 2001

QMOM == Complex Configuration

kCDDINE Complex Configuration
Complexes Attdbures T
| global MAME SHORTCUT ~ TYPE YALUE RELOF REQ Mdﬁy
| licemses f
| mem_used Ui MEMORY INFINITY e i
b swap_used =il MEMORY INFINITY »= M
virtual_used vl MEMORY INFINITY = Done
slots s INT] (= -‘-‘-J
S_wmem S_wmemn MEMORY] (= Help
h_wmem h_wmem MEMORY 0 (=
5_fsize s_fsize MEMORY 0 (=
h_fsize h_fsize MEMORY 0 Gin
ns 0 =

FIGURE 2-43 Complex Configuration dialogue “logins”

Managing User Access

There are four user categories in Sun Grid Engine:

1.

Managers:

Managers have full capabilities to manipulate Sun Grid Engine. By default, the
superusers of the master host and any machine hosting a queue have manager
privileges.

. Operators:

The operators can perform the same commands as the manager except that they
cannot add/delete/modify queues.

Owners:

The queue owners are restricted to suspending/unsuspending or
disabling/enabling the owned queues. These privileges are necessary for
successful usage of gidle. Users are commonly declared to be owner of the
queues residing on their desk workstation.

Users:

Users have certain access permissions as described in "User Access Permissions”
on page 122 but no cluster or queue management capabilities.

Each category is described in more detail by the subsequent sections.

Chapter 2 Installation and Administration Guide 117

Manager Accounts

Configure Manager Accounts with gmon

A set of user access configuration dialogues is invoked by pushing the User
Configicon button in the gmon main menu. The available dialogues are the
Manager Account Configuration (see figure 2-44), the Operator Account Configuration
(see figure 2-45) and the User Access List Configuration dialogue (see figure 2-46). The
dialogues can be switched by using the tab selectors at the top of the screen. The
manager account configuration dialogue is opened by default when the User
Config button is pressed for the first time.

If the Manager tab is selected the Manager Configuration dialogue (see figure 2-44)
is presented and accounts can be declared which are allowed to execute any
administrative Sun Grid Engine command. The selection list in the lower half of the
screen displays the accounts already declared to have administrative permission. An
existing manager account can be deleted from this list by clicking on its name with
the left mouse button and by pushing the Delete button at the right side of the
dialogue. A new manager can be added by entering its name to the input window
above the selection list and pressing the Add button afterwards or pressing the
Return key on the keyboard alternatively.

118 Sun Grid Engine « July 2001

Ed aMON === User Configuration

M

Manager] Operator [Userset

andre
andreas
andy
bakblick
terstl
Joza
lothar
root

FIGURE 2-44 Manager Configuration dialogue

Configure Manager Accounts from the Command-line

The command-line interface to administer the manager accounts of your Sun Grid
Engine cluster is provided by several switches to the Sun Grid Engine gconf
command:

gconf -am user_namel,...]

add manager. Adds one or multiple users to the list of Sun Grid Engine managers.
By default the root accounts of all Sun Grid Engine trusted hosts (see section "Sun
Grid Engine Daemons and Hosts" on page 56) are Sun Grid Engine managers.

gconf -dm user_namel,...]

delete manager. Deletes the specified user(s) from the list of Sun Grid Engine
managers.

gconf -sm

show managers. Show the list of all Sun Grid Engine managers.

Chapter 2 Installation and Administration Guide 119

Operator Accounts

Configure Operator Accounts with gmon

The Operator Configuration dialogue (see figure 2-45) is opened upon pushing
the User Config button in the gmon main menu and selecting the Operator tab.
Accounts can be declared which have restricted administrative Sun Grid Engine
command permission unless they are declared to be manager accounts also (see
“Manager Accounts” on page 118). The selection list in the lower half of the screen
displays the accounts already declared to provide operator permission. An existing
account can be deleted from this list by clicking on its name with the left mouse
button and by pushing the Delete button at the right side of the dialogue. A new
operator can be added by entering its name to the input window above the selection
list and pressing the Add button afterwards or pressing the Return key on the
keyboard alternatively.

IJHI]N === |zer Configuration

w

Manager [Operator] Uszerset

archle
lothar
root

FIGURE 2-45 Operator Configuration dialogue

120 Sun Grid Engine « July 2001

Configure Operator Accounts from the Command-line

The administration of operator accounts is very similar to those of the Sun Grid
Engine managers. The corresponding gconf switches are:

gconf -ao user_namel,...]

add operator. Adds one or multiple users to the list of Sun Grid Engine operators.

gconf -do user_namel,...]

delete operator. Deletes the specified user(s) from the list of Sun Grid Engine
operators.

gconf -so

show operators. Show the list of all Sun Grid Engine operators.

Queue Owner Accounts

Queue owners are defined during configuration or modifications of a Sun Grid
Engine queue. Refer to section "Configuring Queues" on page 75 for a description on
how to define queues both with gmon and from command-line. Being the owner of a
queue is required to be able to

m suspend (stop execution of all jobs running in the queue and close the queue),
unsuspend (resume execution in the queue and open the queue),

disable (close the queue, but do not affect running jobs) or

enable (open the queue)

a queue.

Note — Jobs, which have been suspended explicitly while a queue was suspended
will not resume execution when the queue is unsuspended. They need to be
unsuspended explicitly.

Typically, users are setup to be owners of certain queues, if these users need certain
machines from time to time for important work and if they are affected strongly by
Sun Grid Engine jobs running in the background.

Chapter 2 Installation and Administration Guide 121

122

User Access Permissions

Any user having a valid login on at least one submit host and an execution host has
the possibility to use Sun Grid Engine. However, Sun Grid Engine managers can
inhibit access for certain users to certain or all queues. Furthermore, the usage of
facilities like specific parallel environments (see section “Support of Parallel
Environments” on page 145) can be restricted as well.

For the purpose of defining access permissions, so called user access lists, which
constitute named arbitrary overlapping or non-overlapping sets of users, have to be
defined. User names and UNIX group names can be used to define those user access
lists. The user access lists are then used in the cluster configuration (see section
“Cluster Configuration” on page 70), in the queue configuration (see section
“Configuring Subordinate Queues” on page 84) or in the process of configuring
parallel environment interfaces (see section “Configuring PEs with gmon” on page
145) to either deny or allow access to a specific resource.

Configure User Access Lists with gmon

The Userset dialogue (see figure 2-46) is opened upon pushing the User
Configuration button in the gmon main menu and selecting the Userset tab on
the top of the screen. The already available access lists are displayed in the
Usersets selection list on the left side of the screen. The contents of an access list is
displayed in the display region entitled with Users/Groups if it is selected by
clicking on it with the left mouse button in the Access Lists selection list.

Note — Groups are differentiated from users by a prefixed @ sign.

A selected access list can be deleted by pressing the Delete button on the right side
of the screen. Selected access lists can be modified after pushing the Modify button
and new access lists can be added after pushing the Add button. In both cases, the
access list definition dialogue displayed in figure 2-47 is opened and provides the
corresponding means:

The Userset Name input window either displays the name of the selected access
list in the case of a modify operation or can be used to enter the name of the access
list to be declared. The Users/Groups display region again contains the access list
entries as defined so far, while the User/Group input window has to be used to
add new entries to the access list. The entered user or group names (groups are
again prefixed by a @ sign) are appended to the Users/Groups display region
after pressing the <return> key on the keyboard. Entries can be deleted by selecting
them in the display region and pushing the garbage bin icon button.

Sun Grid Engine ¢ July 2001

The modified or newly defined access lists are registered as soon as the Ok button is
pressed, or they are discarded if the Cancel button is used instead. In both cases,
the access list definition dialogue is closed.

El GMON === User Configuration

T

Manager Operator Userset
Access Lists Users/Groups
Il:rash Foodine

devel

hap
hubert
stefka

FIGURE 2-46 Userset Configuration

[aMON

Access List EIdevel
Users/Groups User/Group
{@eo dine o I
hgp

hubert
stefka

|]

FIGURE 2-47 Access List definition dialogue

Chapter 2 Installation and Administration Guide 123

Configure User Access from the Command-line

The following options to the gconf command can be used to create and maintain
user access list from the command-line:

gconf -au user_namel,...] access_list_namel,...]

add user. Adds one or multiple users to the specified access list(s).
gconf -du user_namel,...] access_list_namel,...]

delete user. Deletes one or multiple users from the specified access list(s).
gconf -su access_list_namel,...]

show user access list. Display the specified access list(s).

gconf -sul

show user access lists. Print a listing of all access lists currently defined.

Scheduling

Overview

Sun Grid Engine’s job scheduling activities comprise

m pre-dispatching decisions — such as eliminating execution queues because they
are full or overloaded and spooling jobs currently not eligible for execution in a
waiting area.

m dispatching — deciding a job’s importance with respect to all other pending and
running jobs, sensing the load on all the machines in the cluster, and sending the
job to an execution queue on a machine selected according to the configured
selection criteria,

Sun Grid Engine schedules jobs across a heterogeneous cluster of computers based
on

m the cluster’s current load,
m the jobs’ resource requirements (e.g., CPU, memory, and I/O bandwidth).

124 Sun Grid Engine « July 2001

Scheduling decisions are based on the strategy for the site and the instantaneous
load characteristics of each computer in the cluster. A site’s scheduling strategy is
expressed through Sun Grid Engine’s configuration parameters. Load characteristics
are ascertained by collecting performance data as the system runs.

Scheduling Strategies

The administrator can setup strategies with respect to the following Sun Grid Engine

scheduling tasks:

m Queue sorting - rank the queues in the cluster according to the order in which the
queues should be filled up.

m Job sorting - determine the order in which Sun Grid Engine attempts to schedule
jobs.

Queue sorting

The following means are provided to determine the order in which Sun Grid Engine
attempts to fill up queues:

m Load reporting - Sun Grid Engine administrators can select, which load
parameters are used to compare the load status of hosts and their queues. The
wide variety of standard load parameters being available and an interface for
extending this set with site-specific load sensors are described under “Load
Parameters” on page 113.

m Load scaling - Load reports from different hosts can be normalized to reflect a
comparable situation (see section “Execution Hosts” on page 62).

m Load adjustment - Sun Grid Engine can be configured to automatically correct the
last reported load as jobs are dispatched to hosts. The corrected load will
represent the expected increase in the load situation caused by recently started
jobs. This artificial increase of load can be automatically reduced as the load
impact of these jobs shows effect.

m Sequence number - Queues can be sorted following a strict sequence.

Job sorting

Before Sun Grid Engine starts dispatching, jobs are brought into an order of highest
priority first. Sun Grid Engine will then attempt find suitable resources for the jobs
in priority sequence. Without any administrator influence the order is
first-in-first-out (FIFO). The administrator has the following means of control over
the job order:

m User sort - If this scheduling alternative is in effect jobs of different users are
interleaved. Le., the first jobs all users have submitted are treated equally, then the
second, and so on.

Chapter 2 Installation and Administration Guide 125

m Job priority -Administrators can assign a priority number to the a job thereby
directly determining the sorting order. User can lower the priority assigned to
their own jobs.

n Maximum number of user/group jobs - The maximum number of jobs a user or a
Unix user group can have running in the Sun Grid Engine system concurrently
can be restricted. This will influence the pending job list sorting order, because
jobs of users not exceeding their limit will be given preference.

What Happens in a Scheduler Interval

The Scheduler schedules work in intervals. Between scheduling actions Sun Grid
Engine keeps information about significant events such as job submittal, job
completion, job cancellation, an update of the cluster configuration, or registration of
a new machine in the cluster. When scheduling occurs, the scheduler

m takes into account all significant events,
m sorts jobs and queues corresponding to the administrator specifications,
m takes into account all jobs’ resource requirements.

Then, as needed, Sun Grid Engine
m dispatches new jobs,

m suspends executing jobs,

m maintains the status quo.

Scheduler Monitoring

If a job does not get started and if the reasons are unclear to you, you can execute
galter for the job together with the -w v option. Sun Grid Engine will assume an
empty cluster and will check whether there is any queue available which is suitable
for the job.

Further information can be obtained by executing gstat -7j job_id. It will print a
summary of the job’s request profile containing also the reasons why the job was not
scheduled in the last scheduling run. Executing gstat -j without a job ID will
summarize the reasons for all jobs not having been scheduled in the last scheduling
interval.

Note = Collection of scheduling reason information has to be switched on in the
scheduler configuration sched_conf. Please refer to either the
schedd_job_info parameter in the corresponding Sun Grid Engine Reference
Manual manual page or the section “Changing the Scheduler Configuration via
gmon” on page 131.

126 Sun Grid Engine « July 2001

To retrieve even further detail about the decisions of the Sun Grid Engine scheduler
cod_schedd, the option -tsm of the gconf command can be used. This
command will force cod_schedd to write trace output to the file

Scheduler Configuration

Default Scheduling

The default Sun Grid Engine scheduling is a first-in-first-out policy, i.e. the first job
being submitted is the first the scheduler examines in order to dispatch it to a queue.
If the first job in the list of pending jobs finds a suitable and idle queue it will be
started first in a scheduler run. Only if the first job fails to find a suitable free
resource the second job or a job ranked behind may be started before the first in the
pending jobs list.

As far as the queue selection for jobs is concerned, the default Sun Grid Engine
strategy is to select queues on the least loaded host as long as they deliver suitable
service for the job’s resource requirements. If multiple suitable queues share the
same load the queue being selected is unpredictable.

Scheduling Alternatives

There are various ways to modify the job scheduling and queue selection strategy:

Changing the Scheduling Algorithm

The scheduler configuration parameter algorithm (see the sched conf manual
page in the Sun Grid Engine Reference Manual for further information) is designed to
provide a selection for the scheduling algorithm in use. Currently, default is the
only allowed setting.

Job Priorities

The Sun Grid Engine administration may assign an integer number called job
priority to a job spooled in the pending jobs list. The job priority defines the job’s
position in the pending jobs list. The job with the highest priority number will be
examined first by the scheduler. The value range for job priorities is between -1024
and 1023 with 0 being the priority for new jobs just submitted. If a negative priority

Chapter 2 Installation and Administration Guide 127

128

value is assigned to a job, the job is sorted even behind new jobs just submitted. If
multiple jobs with the same priority number exist the default first-in-first-out rule
applies within this priority class.

Job priorities are assigned to a job via the command:

% galter -p priojob_id ...

where prio specifies the priority to be assigned to the list of jobs as specified in the
trailing blank separated Job Id list.

Note = The term job priorities should not be mixed up with the priority queue
configuration parameter (see the queue_conf manual page in the Sun Grid Engine
Reference Manual) which defines the nice value being set for all jobs executed in a
particular queue.

Note — The second column in the gstat output shows the priorities currently
assigned to the submitted jobs.

Equal Share Sort

The default first-in-first-out scheduling policy described above is well known to
yield rather unfair results if a user submits a series of jobs one after each other in a
short time (e.g. by use of a shell script procedure). The jobs of this user would cover
the suitable resources for a very long time offering no chance for other users to
allocate these queues.

In this case the cluster administration may change the scheduling policy to the so
called equal share sort. If this scheduling alternative is in effect and a user already
has a running job in the system all his other jobs are sorted behind the jobs of other
users in the same priority class (see the previous section for details about priority
classes).

The equal share sort is turned on if the scheduler configuration parameter
user_sort is set to TRUE (see the sched_conf manual page in the Sun Grid
Engine Reference Manual).

Sun Grid Engine ¢ July 2001

Scaling System Load

As mentioned above Sun Grid Engine uses the system load information on the
machines hosting queues to select the executing queue for a job. This queue selection
scheme builds up a load balanced situation thus guaranteeing better utilization of
the available resources in a cluster.

However, the system load may not always tell the truth. If, for example, a multi CPU
machine is compared to a single CPU system the multiprocessor system usually
reports higher load figures as it most probably runs more processes and the system
load is a measurement strongly influenced by the number of processes trying to get
CPU access. But, multi CPU systems are capable of satisfying a much higher load
than single CPU machines. This problem is addressed by processor number adjusted
sets of load values which are reported by default by cod_execd (see section “Load
Parameters” on page 113 and the file <codine_root>/doc/load_parameters.asc
for details). Use these load parameters instead of the raw load values to avoid the
problem described above.

Another example for potentially improper interpretation of load values are systems
with strong differences in their performance potential or in their price performance
ratio for both of which equal load values do not mean that arbitrary hosts can be
selected to execute a job. In this kind of situation, the Sun Grid Engine administrator
should define load scaling factors for the concerning execution hosts and load
parameters (see section “Execution Hosts” on page 62).

Note — The scaled load parameters are also used to compare them against the load
threshold lists load_thresholds and migr_load_thresholds (see the queue conf
manual page in the Sun Grid Engine Reference Manual for details).

A further problem associated with load parameters is the need for an application
and site dependent interpretation of the values and their relative importance. The
CPU load may be dominant for a certain type of application which is common at a
particular site, while the memory load is much more important for another site and
for the application profile to which the site’s compute cluster is typically dedicated
to. To address this problem, Sun Grid Engine allows the administrator to specify a so
called load formula in the scheduler configuration file sched_conf (please refer to
the corresponding Sun Grid Engine Reference Manual section for more detail). Site
specific information on resource utilization and capacity planning can be taken into
account by using site defined load parameters (see section “Adding Site Specific
Load Parameters” on page 114) and consumable resources (see section “Consumable
Resources” on page 96) in the load formula.

Finally, the time dependency of load parameters needs to be taken into account. The
load, which is imposed by the Sun Grid Engine jobs running on a system varies in
time, and often, e.g. for the CPU load, requires some amount of time to be reported
in the appropriate quantity by the operating system. Consequently, if a job was
started very recently, the reported load may not provide a sufficient representation

Chapter 2 Installation and Administration Guide 129

130

of the load which is already imposed on that host by the job. The reported load will
adapt to the real load over time, but the period of time, in which the reported load is
too low, may already lead to an oversubscription of that host. Sun Grid Engine
allows the administrator to specify load adjustment factors which are used in the Sun
Grid Engine scheduler to compensate for this problem. Please refer to the Sun Grid
Engine Reference Manual dealing with the scheduler configuration file sched_conf
for detailed information on how to set these load adjustment factors.

Select Queue by Sequence Number

Another way to change the default queue selection scheme is to set the global Sun
Grid Engine cluster configuration parameter queue sort_method to segno
instead of the default 1oad (see the sched conf manual page in the Sun Grid
Engine Reference Manual). In this case, the system load is no longer used to select
queues. Instead, the sequence number as assigned to the queues by the queue
configuration parameter seq_no (see the queue_conf manual page in the Sun
Grid Engine Reference Manual) is used to define a fixed order between the queue in
which they are selected (if they are suitable for the considered job and if they are
free).

This queue selection policy may be useful if the machines offering batch services at
your site are ranked in a monotonous price per job order: e.g., a job running on
machine A costs 1 unit of money while it costs 10 units on machine B and 100 units
on machine C. Thus the preferred scheduling policy would be to first fill up host A
then host B and only if no alternative remains use host C.

Note — It is not defined which queue is selected if the considered queues all share
the same sequence number.

Restrict the Number of Jobs per User or Group

The Sun Grid Engine administrator may assign an upper limit to the number of jobs
which are allowed to be run by any user or any UNIX group at any point of time. In
order to enforce this feature, please set the maxujobs and/or maxgjobs as
described in the sched_conf section of the Sun Grid Engine Reference Manual.

Sun Grid Engine ¢ July 2001

Changing the Scheduler Configuration via gmon

The Scheduler Configuration dialogue can be opened via clicking on the
Scheduler Configuration button in the gmon main menu. The dialogue is
separated into the General Parameters section and the Load Adjustment
section between which you can switch via the corresponding tab selectors at the top.
The following parameters can be defined with the General Parameters dialogue:

The scheduling algorithm (see section “Changing the Scheduling Algorithm” on
page 127).

The regular time interval between scheduler runs.

The maximum number of jobs allowed concurrently to run per user and per Unix
group (see section “Restrict the Number of Jobs per User or Group” on page 130).
The queue sorting scheme - either sorting by load or sorting by sequence number
(see section “Select Queue by Sequence Number” on page 130).

Whether or not Equal Share Sort (User Sort flag) is activated (see section “Equal
Share Sort” on page 128).

Whether job scheduling information is accessible through gstat -j or not or
whether this information should only be collected for a range of job IDs specified
in the attached input field. It is recommended to switch on general collection of
job scheduling information only temporarily in case of extremely high numbers of
pending jobs.

The load formula to be used to sort hosts and queues.

A sample General Parameters dialogue might look as shown in figure 2-48 on
page 132.

The Load Adjustment dialogue allows definition of:

The load adjustment decay time.

A table of load adjustment values in the lower half of the dialogue enlisting all
load and consumable attributes for which an adjustment value currently is
defined. The list can be enhanced by clicking to the Load or Value button at the
top. This will open a selection list with all attributes attached to the hosts (i.e. the
union of all attributes configured in the global, the host and the
administrator defined complexes). The attribute selection dialogue is shown
in figure 2-7 on page 66. Selecting one of the attributes and confirming the
selection with the Ok button will add the attribute to the Load column of the
Consumable/Fixed Attributes table and will put the pointer to the
corresponding Value field. Modifying an existing value can be achieved by
double-clicking with the left mouse button on the Value field. Deleting an
attribute is performed by first selecting the corresponding table line with the left
mouse button. The selected list entry can be deleted either by typing CTRL-D or
by clicking the right mouse button to open a deletion box and confirming the
deletion.

See "Scaling System Load" on page 129 for background information on load
adjustment parameters.

A sample Load Adjustment dialog might look as shown in figure 2-49 on page 133.

Chapter 2 Installation and Administration Guide 131

Please refer to the sched conf manual page in the Sun Grid Engine Reference
Manual for further detail on the scheduler configuration.

| D AMON === Scheduler Configuration

.. i ; : -I

=

0:0:15 j<

o

T
np_load awve |

FIGURE 2-48 Scheduler Configuration dialogue “General”

132 Sun Grid Engine ¢ July 2001

[E] OMON === Scheduler Configuration

FIGURE 2-49 Scheduler Configuration dialogue “Adjustm.”

Chapter 2 Installation and Administration Guide 133

The Sun Grid Engine Path Aliasing
Facility

In networked UNIX environments a user very often has the same home directory (or
part of it) on different machines if it has been made accessible across the network via
network file system (e.g. NFS). However, sometimes the home directory path is not
exactly the same on all machines.

For example, consider user home directories being available via NFS and
automounter. If a user has a home directory /home/foo on the NFS server he will be
able to access the home directory under this path on all properly installed NFS
clients running automounter, but it is important to notice, that /home/foo on a
client will be just a symbolic link to /tmp_mnt /home/foo, where automounter
physically mounts the directory from the NFSserver.

If, in such a situation, the user would submit a job on a client from somewhere
within the home directory tree accompanying it with the gsub -cwd flag (execute
job in current working directory) Sun Grid Engine might get into trouble to locate
the current working directory on the execution host if it is the NFS server. The
reason for this is, that gsub will grab the current working directory on the submit
host and will get /tmp_mnt /home/foo/. .. as this is the physical location on the
submit host. This path will be passed over to the execution host and cannot be
resolved if the execution host is the NF server with a physical home directory path
of /home/foo.

Other occasions usually causing similar problems are fixed (non automounted) NFS
mounts with different mount point paths on different machines (e.g. mounting home
directories under /usr/people on one host and /usr/users on another) or
symbolic links from outside into a network available file system.

In order to resolve such problems, Sun Grid Engine offers both the administrator
and the user the possibility to configure a path aliasing file. There is a cluster global
path aliasing file under <codine_root>/<cell>/common/codine aliases and a user
specific under $HOME/ . codine aliases. The cluster global file should be
modified by the administrator only. Both files share the same format:

m Blank lines and lines with a "# sign in the first column are skipped.

m Each line other than a blank line or a line lead by "#” has to contain four strings
separated by any number of blanks or tabs.

m The first string specifies a source path, the second a submit host, the third an
execution host and the fourth the source path replacement.

m Both the submit and the execution host entries may consist of only a "*” sign
which matches any host.

134 Sun Grid Engine « July 2001

The files are interpreted as follows:

m After gsub has retrieved the physical current working directory path, the cluster
global path aliasing file is read if present. The user path aliases file is read
afterwards as if it were appended to the global file.

m Lines not to be skipped are read from the top of the file one by one while the
translations specified by those lines are stored if necessary.

m A translation is stored only if the submit host entry matches the host gsub is
executed on and if the source path forms the initial part either of the current
working directory or of the source path replacements already stored.

m As soon as both files are read the stored path aliasing information is passed along
with the submitted job.

= On the execution host, the aliasing information will be evaluated. The leading
part of the current working directory will be replaced by the source path
replacement if the execution host entry of the path alias matches the executing
host. Note, that the current working directory string will be changed in this case
and that subsequent path aliases must match the replaced working directory path
to be applied.

The following is an example how the NFS/automounter problem described above can
be resolved with an aliases file entry

cluster global path aliases file
src-path subm-host exec-host dest-path
/tmp _mnt/ * * /

Configuring Default Requests

Batch jobs are normally assigned to queues by the Sun Grid Engine system with
respect to a request profile defined by the user for a particular job. The user
assembles a set of requests which need to be met to successfully run the job and the
Sun Grid Engine scheduler only considers queues satisfying the set of requests for
this job.

If a user doesn’t specify any requests for a job, the scheduler will consider any queue
the user has access to without further restrictions. However, Sun Grid Engine allows
for configuration of so called default requests which may define resource
requirements for jobs even though the user did not specify them explicitly.

Default requests can be configured globally for all users of a Sun Grid Engine cluster
as well as privately for any user. The default request configuration is represented in
default request files. The global request file is located under

Chapter 2 Installation and Administration Guide 135

136

<codine_root>/<cell>/common/cod_request while the user specific request file is
called .cod_request and can be located in the user’s home directory or in the
current working directory in which the gsub command is executed.

If these files are present, they are evaluated for every job. The order of evaluation is
as follows:

1. First the global default request file.
2. Then the user default request file in the user’s home directory.

3. Then the user default request file in the current working directory.

Note — The requests specified in the job script or supplied with the gsub command
line have higher precedence as the requests in the default request files (see the Sun
Grid Engine User’s Guide for details on how to request resources for jobs explicitly).

Note = Unintended influence of the default request files can be prohibited by use of
the gsub -clear option, which discards any previous requirement specifications.

The format of both the local and the global default request files is described below:

m The default request files may contain an arbitrary number of lines. Blank lines
and lines with a "#’ sign in the first column are skipped.

m Each line not to be skipped may contain any gsub option as described in the Sun
Grid Engine Reference Manual. More than one option per line is allowed. The batch
script file and argument options to the batch script are not considered as gsub
options and thus are not allowed in a default request file.

m The gsub -clear option discards any previous requirement specifications in the
currently evaluated request file or in request files processed before.

As an example, suppose a user’s local default request file is configured as follows:

If the user submitted a batch job using the following command:

Local Default Request File

exec job on a sun4 queue offering 5h cpu
-1 arch=solarisé4,s cpu=5:0:0

exec job in current working dir

-cwd

% gsub test.sh

Sun Grid Engine ¢ July 2001

the effect would be the same as if the user had specified all gsub options directly in
the command line:

% gsub -1 arch=solaris64,s_cpu=5:0:0 -cwd test.sh

Note = Like batch jobs submitted via gsub, interactive jobs submitted via gsh will
consider default request files also.

Note — Interactive or batch jobs submitted via gmon will also take respect to these
request files.

Setting Up a Sun Grid Engine User

The following list describes the necessary/available tasks in order to set up a user
for Sun Grid Engine:

m Required Logins:

In order to submit a job from host A for execution on host B, the user has to have
identical accounts (i.e. identical user names) on the hosts A and B. No login is
required on the machine where cod_gmaster runs.

m Setting Sun Grid Engine Access Permissions:

Sun Grid Engine offers the ability to restrict user access to the entire cluster, to
queues and parallel environments. Please see section “User Access Permissions”
on page 122 for a detailed description.

In addition, a Sun Grid Engine user may get the permission to suspend or enable
certain queues (see section “Configuring Owners” on page 86 for more
information).

m File Access Restrictions:

Sun Grid Engine users need to have read access to the directory
<codine_root>/cell/common.

Before a Sun Grid Engine job is started, the Sun Grid Engine execution daemon
(running as root) creates a temporary working directory for the job and changes
the ownership of the directory to the job owner (the temporary directory is
removed as soon as the job finishes). The temporary working directory is created

Chapter 2 Installation and Administration Guide 137

under the path defined by the queue configuration parameter tmpdir (see the
queue_conf manual page in the Sun Grid Engine Reference Manual for more
information).

Please make sure, that temporary directories may be created under the tmpdir
location, set to Sun Grid Engine user ownership and that the users may write to
the temporary directories afterwards.

m Site Dependencies:

By definition, batch jobs do not have a terminal connection. Thus, UNIX
commands like stty in the command interpreters start-up resource file (e.g.
.cshre for csh) may lead to errors. Please check for occurrence and avoid such
commands as described in "Verifying the Installation” on page 52.

As Sun Grid Engine batch jobs usually are executed off-line, there are only two
methods to notify a job owner about error events and the like. One way is to log
the error messages to file the other is to send electronic mail (e-mail). Under some
rare circumstances (e.g. if the error log file can’t be opened) e-mail is the only way
to directly notify the user (error messages like these are logged to the Sun Grid
Engine system logfile anyway, but usually the user would not look into the
system logfile). Therefore, it is advantageous if the electronic mail system is
properly installed for Sun Grid Engine users.

m Sun Grid Engine Definition Files:

The following definition files may be set up for Sun Grid Engine users: Qmon (the
resource file for the Sun Grid Engine X-Windows Motif GUI; see section
“Customizing gqmon” on page 138), .codine aliases (current working
directory path aliases; see section “The Sun Grid Engine Path Aliasing Facility”
on page 134) and .cod_request (default request definition file; see section
“Configuring Default Requests” on page 135).

138

Customizing gmon

The OSF/1 Motif graphical user's interface of Sun Grid Engine, gmon, can be
customized by defining or modifying the corresponding X-windows resources.
Basically, there are two ways of customizing, either site dependent or user
dependent.

There is a template for the resource customizing in the file
<codine_root>/qmon/Qmon. The site dependent customizing can be achieved by
copying this file to the sites default resources file directory (usually something like
/usr/1lib/X11/app-defaults) and by modifying it to your site’s needs.
Another way is to incorporate the contents of the template file adapted to your
needs into the sites default X-windows resource file.

Sun Grid Engine ¢ July 2001

As usual for X-windows resources the user can overwrite the site specific
customizing. There are three ways to do this:

1. Create a file named Qmon in the users home directory containing corresponding
resource definitions (e.g. by copying and modifying the site resource file).

2. Incorporate gmon related resource definitions into the users private default
X-windows resource definition file (usually .Xdefaults).

3. Use the xrdb -merge file_name command (see the xrdb manual page) to merge
the gmon related resource definitions contained in the file file_name into your
current settings. You can do this either interactively or in the users default
X-windows start-up script (e.g. .xinitrc).

Please refer to the template Qmon resources file for a description of the resource
attributes which can modified to customize gmon.

Gathering Accounting and Utilization
Statistics

The Sun Grid Engine command gacct can be used to generate alphanumeric
accounting statistics. If invoked without switches gacct displays the aggregate
utilization on all machines of the Sun Grid Engine cluster as generated by all jobs
having finished and being contained in the cluster accounting file
<codine_root>/<cell>/common/accounting. In this case gacct just reports three
times in seconds:

= REAL

The wallclock time. The time between the job starts and the job finishes.
m USER

The CPU time spent in the user processes.
s SYSTEM

The CPU time spent in system calls.
Several switches are available to report accounting information about all or certain
queues, all or certain users, and the like. It is possible in particular, to request
information about all jobs having completed and matching a resource requirement
specification expressed with the same -1 syntax as used with the gsub command to

submit the job. Please refer to the gacct manual page in the Sun Grid Engine
Reference Manual for more information.

Chapter 2 Installation and Administration Guide 139

A gacct option exists to directly access the complete resource usage information
stored by Sun Grid Engine including the information as provided by the
getrusage system call (please refer to the corresponding manual page):

m -j [job_id|job_name]

This option reports the resource usage entry for the job(s) with job-id job_id or
with job name job_name respectively. If no argument is given, all jobs contained in
the referenced accounting file are displayed. If a job-id is selected and if more
than one entry is displayed, either job-id numbers have wrapped around (the
range for job-ids is 1 to 999999) or a checkpointing job having migrated is shown.

Checkpointing Support

Checkpointing is a facility to freeze the status of an executing job or application, save
this status (the so called checkpoint) to disk and to restart from that checkpoint later
on if the job or application has otherwise failed to complete (e.g. due to a system
shutdown). If a checkpoint can be moved from one host to another, checkpointing
can be used to migrate applications or jobs in a cluster without considerable loss of
computational resources. Hence, dynamic load balancing can be provided by the
help of a checkpointing facility.

Sun Grid Engine supports two levels of checkpointing:

1. User level checkpointing, in which the provision of the checkpoint generation
mechanism is entirely in the responsibility of the user or the application.
Examples for user level checkpointing are the periodical writing of restart files
encoded in the application at prominent algorithmic steps combined with proper
processing of these files upon restart of the application or the use of a checkpoint
library which needs to be linked with the application and which thereby installs a
checkpointing mechanism.

Note = A variety of third party applications provides an integrated checkpoint
facility based on writing of restart files.

Note — Checkpoint libraries are available from the public domain (refer to the
Condor project of the University of Wisconsin for example) or from hardware
vendors.

140 Sun Grid Engine « July 2001

2. Kernel level transparent checkpointing, which has to be provided by the operating
system (or enhancements to it) and which can be applied to potentially arbitrary
jobs. No source code changes or re-linking of your application needs to be
provided to use kernel level checkpointing.

Note — Kernel level checkpointing can be applied to complete jobs, i.e. the process
hierarchy created by a job, while user level checkpointing is usually restricted to
single programs. Thus, the job in which such programs are embedded needs to
properly handle the case if the entire job gets restarted.

Note — Kernel level checkpointing as well as checkpointing based on checkpointing
libraries can be very resource consuming because the complete virtual address space
in use by the job or application at the time of the checkpoint needs to be dumped to
disk. As opposed to this, user level checkpointing based on restart files can restrict
the data written to the checkpoint on the important information only.

Checkpointing Environments

In order to reflect the different types of checkpointing methods outlined above and
the potential variety of derivatives of these methods on different operating system
architectures, Sun Grid Engine provides a configurable attribute description for each
checkpointing method in use called a checkpointing environment. Default
checkpointing environments are provided with the Sun Grid Engine distribution and
can be modified corresponding to the site’s needs.

New checkpointing methods can be integrated in principal, but this may become a
challenging task and should be performed only by experienced personnel or your
Sun Grid Engine support team.

Configuring Checkpointing Environments with
gmon

The Checkpointing Configuration dialogue displayed in figure 2-50 on
page 142 shows how the already configured checkpointing environments can be
viewed (select one of the checkpointing environment names enlisted in the
Checkpoint Objects column and the corresponding configuration will be
displayed in the Configuration column) added, modified or deleted (use the
corresponding buttons). Select the checkpointing environment to be modified or
deleted in the Checkpoint Objects column together with the corresponding
button. The selected environment will be deleted if the Delete button is pressed or

Chapter 2 Installation and Administration Guide 141

the Change Checkpoint Object dialogue (see figure 2-51 on page 143) will be
opened with the current configuration of the selected checkpointing environment if
the Modi fy button is used. The same dialogue with a template configuration will be
opened if the Add button is pressed. Close the Checkpointing Configuration
dialogue with the Done button.

IJHUN ==* Checkpointing Configuration

_kCﬂDINE LCheckpointing Configuration

Checkpoint Objects Configuration

cpr Mame cpr

userdefined Interface CFPR Hodify
Checkpoint command JSusr/GRDAckptAopr_ I
Migrate command Ausr/GRDAckptfopr_
Festart command Susr/GROAckptAcpr_ Tone
Clean command Susr/GROVckptScpr_ T
Checkpoint directory Stmp
Hueues balrog.qg bilbur.g [Fs

FIGURE 2-50 Checkpointing Configuration dialogue

When pressing the Add or Modify button of the Checkpointing
Configuration dialogue (see figure 2-50 on page 142) the Change Checkpoint
Object dialogue displayed in figure 2-51 on page 143 is opened. You can define the
name of the checkpointing environment to be configured as well as
checkpoint/migration/restart/clean-up command strings, a directory where to store
checkpoint files to, an occasion specification when checkpoints have to be initiated
and a Unix signal to be sent to job/application when a checkpoint is initiated. Please
refer to the checkpoint section 5 manual page in the Sun Grid Engine Reference
Manual for details on these parameters. In addition you have to define the
Interface (also called checkpointing method) to be used. Please select one of
those provided in the corresponding selection list and refer to the checkpoint
manual page for details on the meaning of the different interfaces.

For the checkpointing environments provided with the Sun Grid Engine distribution
you should only change the parameters Name, Checkpointing Directory and
Queue List . For the latter, please click on the little icon button right to the Queue
List window to open the Select Queues dialogue as displayed in figure 2-52 on
page 144. Select the queues you want to include in the checkpointing environment
from the Available Queues list and add them to the Chosen Queues list.
Pressing the Ok button will enter these queues to the Queue List window of the
Change Checkpoint Object dialogue.

142 Sun Grid Engine « July 2001

Note — The queues contained in the queue list of a checkpointing environment need
to be of type CHECKPOINTING (see the queue_conf manual page for details) to
become eligible for the execution of checkpointing jobs.

Use the Ok button in the Change Checkpoint Object dialogue to register your
changes with cod_gmaster or use the Cancel button to discard your changes.

|-_|_' Change Checkpoint Object

balrog.q
bilbur,og
dwain,qg
fangorn .

fusr /GRD/ckpt fopr_ckpt_conmand

.f'usra"GRD}"ckpt :"v:pr migration_ cnmmand

fusra’GRchkptfcpr restart_command
f'usr.-"GRD.r"ckpt.r"cpr clean_comnmand

FIGURE 2-51 Change Checkpoint Object

Chapter 2 Installation and Administration Guide 143

[El Select Queues

Availasble Cusues Chozen Uusues
balrogz,q I balroz,q
bilbur,g bilbur.g
dwain,g i) | Tuain.g
fangorn.,q ~ |fangorn,g
gloin,qg 1]
gloin,g2
li=,q v
Ok . Cancel Heln

FIGURE 2-52 Checkpointing Queue Selection

Command-line Configuration of Checkpointing
Environment.

The following options to the gconf command create and maintain checkpointing
environment definitions:

gconf -ackpt ckpt_name

add checkpointing environment. Brings up an editor (default vi or corresponding to
the SEDITOR environment variable) with a checkpointing environment
configuration template. The parameter ckpt_name specifies the name of the
checkpointing environment and is already filled into the corresponding field of the
template. The checkpointing environment is configured by changing the template
and saving to disk. See the checkpoint manual page in the Sun Grid Engine
Reference Manual for a detailed description of the template entries to be changed.

gconf -dckpt ckpt_name
delete checkpointing environment. Deletes the specified checkpointing environment.
gconf -mckpt ckpt_name

modify checkpointing environment. Brings up an editor (default vi or
corresponding to the $EDITOR environment variable) with the specified
checkpointing environment as configuration template. The checkpointing
environment is modified by changing the template and saving to disk. See the
checkpoint manual page in the Sun Grid Engine Reference Manual for a detailed
description of the template entries to be changed.

144 Sun Grid Engine « July 2001

gconf -sckpt ckpt_name

show checkpointing environment. Print the configuration of the specified
checkpointing environment to standard output.

gconf -sckptl

show checkpointing environment list. Display a list of the names of all
checkpointing environments currently configured.

Support of Parallel Environments

Parallel Environments

A Parallel Environment (PE) is a software package designed for concurrent computing
in networked environments or parallel platforms. A variety of systems have evolved
over the past years into viable technology for distributed and parallel processing on
various hardware platforms. Examples for two of the most common message passing
environments today are PVM (Parallel Virtual Machine)! and MPI (Message Passing
Interface)?. Public domain as well as hardware vendor provided implementations
exist for both tools.

All these systems show different characteristics and have segregative requirements.
In order to be able to handle arbitrary parallel jobs running on top of such systems,
Sun Grid Engine provides a flexible and powerful interface satisfying the various
needs.

Arbitrary PEs can be interfaced by Sun Grid Engine as long as suitable start-up and
stop procedures are provided as described in section "The PE Start-up Procedure” on
page 150 and in section "Termination of the PE" on page 151, respectively.

Configuring PEs with gmon

The Parallel Environment Configuration dialogue (see figure 2-53) is
opened upon clicking with the left mouse button on the PE Config icon button in
the gmon main menu. The already configured PEs are displayed in the PE List

1.PVM, Oak Ridge National Laboratories
2.MPI, The Message Passing Interface Forum.

Chapter 2 Installation and Administration Guide 145

selection list on the left side of the screen. The contents of a PE list is displayed in the
display region entitled with Configuration if the PE is selected by clicking on it
with the left mouse button in the PE List selection list.

A selected PE list can be deleted by pressing the Delete button on the right side of
the screen. Selected PE lists can be modified after pushing the Modi£fy button and
new PE lists can be added after pushing the Add button. In both cases, the PE list
definition dialogue displayed in figure 2-54 is opened and provides the
corresponding means.

AMON == Parallel Environment Configuration

_&CODINE Parallel Environment Configuration

PE List Configuration —

i deonird - - | Eaid

T E Mame mpi
Slots 100 Madify
Hueues durin.g dwain.g e=o g
Users crash gevel i M
xusers MOME].‘ﬁ_u;u_né}.l
Start Proc Args Ausr/CODINE/mpisst B HE oo
Stop Proc Args Ausr/CODINEmpilsst I | =2
|Allocatlon Rule Fround_robin

FIGURE 2-53 Parallel Environment Configuration dialogue

The Name input window either displays the name of the selected PE list in the case
of a modify operation or can be used to enter the name of the PE list to be declared.
The Slots spin box has to be used to enter the number of job slots in total which
may be occupied by all PE jobs running concurrently.

The Queue List display region shows the queues which can be used by the PE. By
clicking on the little icon button on the right side of the Queue List display region,
a Select Queues dialogue as shown in figure 2-55 is opened to modify the PE
queue list.

The User Lists display region contains the user access lists (see section “User
Access Permissions” on page 122) which are allowed to access the PE while the
Xuser Lists display region enlists those access lists, to which access is denied.
The little icon buttons associated with both display regions bring up Select Access
Lists dialogues as shown in figure 2-55. These dialogues have to be used to modify
the content of both access list display regions.

146 Sun Grid Engine « July 2001

The Start Proc Args and Stop Proc Args input windows are provided to enter
the precise invocation sequence of the PE start-up and stop procedures (see sections
"The PE Start-up Procedure” on page 150 and "Termination of the PE" on page 151
respectively). The first argument usually is the start or stop procedure itself. The
remaining parameters are command-line arguments to the procedures. A variety of
special identifiers (beginning with a s’ prefix) are available to pass Sun Grid Engine
internal run-time information to the procedures. The sge_pe manual page in the
Sun Grid Engine Reference Manual contains a list of all available parameters.

The Allocation Rule input window defines the number of parallel processes to
be allocated on each machine which is used by a PE. Currently, only positive integer
numbers and the special value $pe_slots are supported. $pe_slots denotes
that all processes which are created have to be located on a single host.

The Control Slaves toggle button declares whether parallel tasks are generated
via Sun Grid Engine (i.e. via cod_execd and cod_shepherd) or whether the
corresponding PE performs its own process creation. It is advantageous if Sun Grid
Engine has full control over slave tasks (correct accounting and resource control), but
this functionality is only available for PE interfaces especially customized for Sun
Grid Engine. Please refer to section "Tight Integration of PEs and Sun Grid Engine"
on page 152 for further details.

The Job is first task toggle button is only meaningful if Control Slaves has
been switched on. It indicates, that the job script or one of its child processes acts as
one of the parallel tasks of the parallel application (this is usually the case for PVM,
for example). If it is switched off, the job script initiates the parallel application but
does not participate (e.g. in case of MPI when using “mpirun”).

The modified or newly defined PE lists are registered as soon as the Ok button is
pressed, or they are discarded if the Cancel button is used instead. In both cases,
the PE list definition dialogue is closed.

Chapter 2 Installation and Administration Guide 147

|[Ed Add/Modify PE

durin.g
dwain.g
Balyn . g
fanzorn.q

fowi b

FIGURE 2-54 Parallel environment definition dialogue

: |'t___J Select Queues

FIGURE 2-55 Select Queues dialogue

148 Sun Grid Engine ¢ July 2001

Select Access Lists

Available Access Lists Chosen Access Lists
I[.ﬁ.l.Sh R I : Dm_Sh R R I
devel | devel
]|
=
Ok Cancel

FIGURE 2-56 Select Access Lists dialogue

Configuring PEs from the Command-line

The following options to the gconf command create and maintain parallel
environment interface definitions:

gconf -ap pe_name

add parallel environment. Brings up an editor (default vi or corresponding to the
$EDITOR environment variable) with a PE configuration template. The parameter
pe_name specifies the name of the PE and is already filled into the corresponding
field of the template. The PE is configured by changing the template and saving to
disk. See the sge_pe manual page in the Sun Grid Engine Reference Manual for a
detailed description of the template entries to be changed.

gconf -dp pe_name

delete parallel environment. Deletes the specified PE.

gconf -mp pe_name

modify parallel environment. Brings up an editor (default vi or corresponding to
the SEDITOR environment variable) with the specified PE as configuration
template. The PE is modified by changing the template and saving to disk. See the
sge_pe manual page in the Sun Grid Engine Reference Manual for a detailed
description of the template entries to be changed.

gconf -sp pe_name

show parallel environment. Print the configuration of the specified PE to standard

output.

Chapter 2 Installation and Administration Guide 149

150

gconf -spl

show parallel environment list. Display a list of the names of all parallel
environments currently configured.

The PE Start-up Procedure

Sun Grid Engine starts the PE by simply invoking a start-up procedure via the exec
system call. The name of the start-up executable and the parameters passed to this
executable are configurable from within Sun Grid Engine. An example for such a
start-up procedure for the PVM environment is contained in the Sun Grid Engine
distribution tree. It consists of a shell script and a C-program which is invoked by
the shell script. The shell script uses the C-program to cleanly start-up PVM. All
other operations required are handled by the shell script.

The shell script is located under <codine_root>/pvm/startpvm. sh. The C-program
file can be found under <codine_root>/pvm/src/start_pvm.c.

Note = The start-up procedure could have been covered by a single C-program as
well. The shell script is used to allow for easier customizing of the sample start-up
procedure.

Our example script startpvm. sh requires 3 arguments:

1. The path of a host file generated by Sun Grid Engine containing the hostnames,
where PVM is going to be started.

2. The host on which the startpvm. sh procedure was invoked.

3. The path of the PVM root directory (as usually contained in the PYM_ROOT
environment variable).

These parameters can be passed to the start-up script via the means described in
"Configuring PEs with gmon" on page 145. The parameters are among those
provided to PE start-up and stop scripts by Sun Grid Engine during runtime. The
required host file, as an example, is generated by Sun Grid Engine and the name of
the file can be passed to the start-up procedure in the PE configuration by the special
parameter name Scodine hostfile. A description of all available parameters is
given in the sge_pe manual page in the Sun Grid Engine Reference Manual.

The hostfile has the following format:

m Each line of the file refers to a host on which parallel processes are to be run.
m The first entry of each line denotes the hostname.
m The second entry specifies the number of parallel processes to be run on the host

Sun Grid Engine ¢ July 2001

m The third entry denotes a processor range to be used in case of a multiprocessor
machine

This file format is generated by Sun Grid Engine and is fix. PEs, which need a
different file format, as for example PVM, need to translate it within the start-up
procedure (see startpvm. sh).

As soon as the PE start-up procedure has been started by Sun Grid Engine it
launches the PE. The start-up procedure should exit with a zero exit status. If the exit
status of the start-up procedure is not zero, Sun Grid Engine will report an error and
will not start the parallel job.

Note = It is recommended to test any start-up procedures first from the
command-line without Sun Grid Engine to remove all errors which may be hard to
trace if the procedure is integrated into the Sun Grid Engine framework.

Termination of the PE

When a parallel job finishes or is aborted (via gdel) a procedure to halt the parallel
environment is called. The definition and semantics of this procedure are very
similar to those described for the start-up program. The stop procedure can also be
defined in a PE configuration (see for example "Configuring PEs with gmon" on page
145).

The stop procedure’s purpose is to shutdown the PE and to reap all associated
processes.

Note — If the stop procedure fails to clean-up PE processes, Sun Grid Engine may
have no information about the processes running under PE control and thus cannot
clean-up. Sun Grid Engine, of course, cleans up the processes directly associated
with the job script Sun Grid Engine has launched.

The Sun Grid Engine distribution tree also contains an example stop procedure for
the PVM PE. It resides under <codine_root>/pvm/stoppvm.sh. It takes two
arguments:

1. The path to the Sun Grid Engine generated hostfile.
2. The name of the host on which the stop procedure is started.

Likewise the start-up procedure, the stop procedure is expected to return exit status
zero on success and a non-zero exit status on failure.

Chapter 2 Installation and Administration Guide 151

152

Note — It is recommended to test any stop procedures first from the command-line
without Sun Grid Engine to remove all errors which may be hard to trace if the
procedure is integrated into the Sun Grid Engine framework.

Tight Integration of PEs and Sun Grid Engine

In section "Configuring PEs with gmon" on page 145 it was mentioned under the
explanation of the Control Slaves parameter, that PEs for which the creation of
parallel tasks is performed by the Sun Grid Engine components cod_execd and
cod_shepherd offer benefits over PEs which perform their own process creation.
This is due to the fact that the UNIX operating system allows reliable resource
control only for the creator of a process hierarchy. Features like correct accounting,
resource limits and process control for parallel applications can only be enforced by
the creator of all parallel tasks.

Most PEs do not implement these features and hence do not provide a sufficient
interface for the integration with a resource management system like Sun Grid
Engine. To overcome this problem Sun Grid Engine provides an advanced PE
interface for the tight integration with PEs, which transfers the responsibility for the
task creation from the PE to Sun Grid Engine.

The Sun Grid Engine distribution contains two examples of such a tight integration
for the PVM public domain version and for the MPICH MPI implementation from
Argonne National Laboratories. The examples are contained in the directories
<codine_root>/pvm and <codine_root>/mpi respectively. The directories contain a
loosely integrated variant of the interfaces for comparison in addition, as well as
README files describing the usage and any current restrictions. Please refer to those
README files for further detail.

Note — Performing a tight integration with a PE is an advanced tasks and may
require expert knowledge on the PE and the Sun Grid Engine PE interface. You may
wish to contact your Sun Grid Engine distributor for support.

Sun Grid Engine ¢ July 2001

The Sun Grid Engine Queuing System
Interface (QSI)

Motivation

There are circumstances in which a site does not wish to install Sun Grid Engine on
all machines for which batch access has to be provided, but instead wants to use
another queuing system already available on these hosts. Typical examples are, that
such machines do not belong to the same organization, and thus cannot be
maintained by the Sun Grid Engine administration, or that such machines utilize a
very special queuing system interfacing specifically designed accounting facilities
and the like (very common for so called Supercomputers).

In cases like that Sun Grid Engine offers a general interface to such queuing systems.
Access to the hosting queuing system (QS) is provided by the concept of transfer
queues. A transfer queue is defined by the value TRANSFER in the type field of the
queue configuration (see section “Configuring Queues” on page 75 in the Sun Grid
Engine Installation and Administration Guide). The machine hosting a transfer queue is
required to provide user-command-style access to the QS. A Sun Grid Engine
daemon called cod_gstd (Queuing System Transfer Daemon) must run on these
gateway machines and a QS interface configuration file, with definitions how to
interface the foreign queuing system(s), needs to be provided for cod_gstd.

How Jobs for Another Queueing System are
Processed

Jobs to be forwarded to another QS can be submitted like any other Sun Grid Engine
job. Users request queue attributes for the job via the gsub command just like for
normal Sun Grid Engine jobs (see the Sun Grid Engine User’s Guide for details). It is
even possible that such a job is processed either within the Sun Grid Engine system
or passed outside, depending on the available and best suited resources.

If the Sun Grid Engine scheduler decides to pass the request to another queuing
system, i.e. a transfer queue is selected for execution of the job, the necessary
information together with the job script is forwarded to the cod_gstd on the
machine hosting the selected transfer queue. The cod_gstd will then generate and
execute a submit command to the QS with respect to the definitions in the QSI
configuration file (see below) for that host.

Chapter 2 Installation and Administration Guide 153

Commands like gstat or gdel will be treated in a similar way. Cod_gstd
provides the necessary mapping between the job as traced by the Sun Grid Engine
system (with a unique Sun Grid Engine job-id) and the job as recognized by the
other QS. Finishing QS jobs are recognized by cod_gstd via a repeatedly executed
command, that needs to be provided by the cluster administration and which is
defined in the corresponding QSI configuration file. If a job finishes, some
accounting information is reported to cod_gmaster and a (freely configurable)
clean-up procedure is invoked (STDOUT and STDERR output might be transferred by
use of the clean-up procedure, for example).

The QSI Configuration File

For each queuing system interfaced by a cod_gstd a configuration file needs to be
present. These files are expected in cod_gstd’s configuration and spool directory
(see the cod_gstd manual page for details about this spool directory). The names of
the configuration files are supposed to start with the string commands. (thus
commands_mygs would be a valid name). At start-up of cod_gstd the
configuration files need to be present. Each file contains definitions for one QS
interfaced by this cod_gstd. The format of the files is described in detail in the
gsi_conf manual page. Here, a brief description of the entries is given:

m queuing_system

The name of the QS to be interfaced. The name is arbitrary but needs to
correspond with the queueing system queue configuration entry of the
transfer queues to pass requests to this QS.

m transfer_queue

Attached Sun Grid Engine queue. Sun Grid Engine jobs dispatched to this queue
are transferred to this cod_gstd. This entry provides the necessary mapping
between the queuing system to be interfaced (defined by the parameter above)
and the attached transfer queue. See section "Configuring Queues" on page 75 for
detailed information on the creation of transfer queues.

m submit
The procedure invoked by cod_gstd to submit jobs to the QS.
m delete_job

If a job passed to the QS is deleted from within Sun Grid Engine via gdel,
cod_gstd executes this procedure.
m queuing_system_up

Cod_gstd regularly executes this procedure to make sure that the QS is up and
provides service. If cod_gstd notices that the QS is down the status

transfer down is reported in the gstat output for the transfer queues being
configured to forward requests to the QS.

154 Sun Grid Engine « July 2001

job_status

In order to recognize if jobs running under QS control have finished, cod_gstd
polls the QS for information using this command. In addition, the special option
-gsi to the Sun Grid Engine gstat command displays status information about
forwarded jobs as reported by the QS and this procedure is used to retrieve the
information being displayed.

job_finished

This specifies the procedure to be called after QS jobs have finished in order to
clean up user data, for example.

load_sensor_command

A user configurable load sensor as described in section "Adding Site Specific
Load Parameters" on page 114. The load sensor is intended to measure the load in
the foreign queuing system.

load_sensor_file

A file which contains fixed load values. Each line in the file is expected to contain
a load parameter name and the blank separated value. If both, a
load_sensor_file and a load_sensor_command are present, the
load_sensor_file produced values overrule values represented in the
load_sensor_file in case of equally named load parameters.

The set-up of the procedures to be configured in the QS interface configuration file is
crucial for the usability and reliability of the interface. In the following, it is therefore
described in more detail.

Setting Up QS Command Procedures

The command procedures used by cod_gstd to interface the QS must be set up by
the cluster administration. These procedures may be built using arbitrary command
interpreters or programming languages, as long as they follow the rules described
below:

A command procedure needs to be a stand-alone executable file provided with
the full pathname to the QS interface configuration file.

The administrator can configure a variety of variables to be expanded at runtime
by cod_gstd and being passed to a command procedure as command line
options. In case of the submit command, for example, available variables are the
job script file, the submit directory, the resource limits imposed on the job by the
transfer queue configuration and so on (see the gsi_conf manual page for
details). These parameters need to be processed by the command procedure as
defined in the QSI configuration file.

Chapter 2 Installation and Administration Guide 155

156

m A command procedure is supposed to show a defined behavior on exit. The
submit command, for example, should return with exit status 0 on success and the
QS job-id printed on STDOUT. On failure it should return with exit status 1 and an
error string passed to STDERR. Please refer to the gsi_conf manual page for
details.

Note — Cod_gstd checks for the exit status and parses the output of the command
procedures. Please make sure that no other output interferes with the one required.

An Example of a QSI file

The following is an example of a QSI configuration file being set up to interface the
NQS queuing system and demonstrating a few of the facilities to pass variables to
the command procedures:

FILE: commands.ngs - QSI --> NQS
gqueueing system ngs

transfer queue ngs.q

submit /usr/gsi/gsub.sh "S$std err out" $s cpu S$script file
delete job /usr/gsi/gdel.sh $jobid!’

suspend_queue not implemented

queueing system up /usr/gsi/gs_up.sh

job_status su /usr/gsi/gstat.sh $jobid'

job_finished /usr/gsi/job finished.sh $codine job id \
"$std_err out" "$submitdir" $script name

load sensor command measure_ load.sh

load sensor file NONE

Sun Grid Engine ¢ July 2001

The submit command procedure gsub. sh could be provided by the following
bourne-shell script:

#!/bin/sh
FILE: gsub.sh; submit command procedure QSI --> NQS

Processing commandline parameters

ERR OUT=$1

if ["SERR OUT" = ""]; then
if empty --> default
ERR OUT="err out"

fi

CPU=$2

if [SCPU = infinity]; then
no ngs-switch in this case

CPU_SWITCH=""
else

CPU_SWITCH="-1T SR
fi
SCRIPT=S$3

Handing off the job to NQS

The tr-command following the ‘|’ symbol will isolate the
NQS job ID from gsub’s standard output

/usr/ngs/gsub -eo -o $ERR _OUT $CPU_SWITCH \

$SCRIPT | tr -dc ’[0-9\012]"

Note — This example only behaves corresponding to the rules, if the exit status of
the invoked NQS submit command is 0 on success (1 otherwise) and if the output
consists of a single line with no other digits than the NQS job ID (in case of failure
an error message should be printed to stderr by the NQS submit). The example
submit command procedure needs to be modified correspondingly, if these
prerequisites are violated by the NQS derivative being used.

Monitoring QSI Daemons and Jobs

A special switch to the gstat command is available to monitor the status of the
configured QSIs and of the jobs having been passed to the QS. The switch is -gsi
and it is available both with or without the gstat - f option. The -gsi switch takes a

Chapter 2 Installation and Administration Guide 157

hostname running a cod_gstd as optional argument. Qstat reports the status of all
cod_gstds if a hostname is missing and the status of the cod_gstd running on the
specified host otherwise.

Without the - £ switch gstat displays a brief tabulated listing of the running QS
jobs. The - £ switch forces gstat to list a rather complete set of information
including the command procedures used to interface the QS.

158

Trouble Shooting

Scheduler Monitoring

Please refer to section "Scheduler Monitoring" on page 126.

Retrieving Error Reports

Sun Grid Engine reports errors or warnings by logging messages into certain files
and/or by electronic mail (e-mail). The logfiles used are:

m Messages Files:

There are separate messages files for the cod_gmaster, the cod_schedd and
the cod_execds. The files have the same file name messages. The
cod_gmaster logfile resides in the master spool directory, the cod_schedd
messages file in the scheduler spool directory and the execution daemons’ logfiles
reside in the spool directories of the execution daemons (see section “Spool
Directories Under the Root Directory” on page 44 for more information about the
spool directories).

The messages files have the following format:

» Each message occupies a single line.

» The messages are subdivided into 5 components separated by the vertical bar
sign ().

The first component is a time stamp for the message.

The second specifies the Sun Grid Engine daemon generating the message.
The third is the hostname the daemon runs on.

The fourth is a message type which is either N for notice, I for info (both for
informational purposes only), W for warning (s.th. may be wrong), E for error
(an error condition has been detected) or C for critical (may lead to a program
abort).

s The fifth is the message text.

Sun Grid Engine ¢ July 2001

Note = If, for some reason, an error logfile is not accessible, Sun Grid Engine will try
to log the error message to the files /tmp/cod_gmaster_messages,
/tmp/cod_schedd messages or /tmp/cod execd messages on the
corresponding host.

= Job STDERR Output:

As soon as a job is started, the standard error (STDERR) output of the job script
is redirected to a file. The file name and the location either complies to a
default or may be specified by certain gsub command line switches. Please
refer to the Sun Grid Engine User’s Guide and the Sun Grid Engine Reference
Manual for detailed information.

In some circumstances Sun Grid Engine notifies users and /or administrators about
error events via e-mail. The mail messages sent by Sun Grid Engine do not contain a
message body. The message text is fully contained in the mail subject field.

Running Sun Grid Engine Programs in Debug
Mode

For some severe error conditions the error logging mechanism may not yield
sufficient information to identify the problems. Therefore, Sun Grid Engine offers the
ability to run almost all ancillary programs and the daemons in debug mode. There
are different debug levels varying in the extent and depth of information which is
provided. The debug levels range from 0 to 10, with 10 being the level delivering the
most detailed information and 0 switching off debugging.

To set a debug level an extension to your .cshrc or .profile resource files is
provided with the Sun Grid Engine distribution. For csh or tcsh users the file
<codine_root>/<util>/dl.csh isincluded. For sh or ksh users the corresponding
file is named <codine_root>/util/dl. sh. The files need to be “sourced” into your
standard resource file. As csh or tcsh user please include the line:

source <codine_root>/util/dl.csh

into your .cshrc file. As sh or ksh user, adding the line:

<codine_root>/util/dl.sh

Chapter 2 Installation and Administration Guide 159

160

into your .profile file is the equivalent. As soon as you now logout and login
again you can use the following command to set a debug level level:

o\°

dl level

If level is greater than 0, starting a Sun Grid Engine command hereafter will force the
command to write trace output to STDOUT. The trace output may contain warnings,
status and error messages as well as the names of the program modules being called
internally together with source code line number information (which is helpful for
error reporting) depending on the debug level being enforced.

Note — It may be useful to watch a debug trace in a window with a considerable
scroll line buffer (e.g. 1000 lines).

Note = If your window is an xterm you might want to use the xterm logging
mechanism to examine the trace output later on.

Running one of the Sun Grid Engine daemons in debug mode will have the result,
that the daemons keep their terminal connection to write the trace output. They can
be aborted by typing the interrupt character of the terminal emulation you use

(e.g. Control-Q).

Note — To switch off the debug mode, set the debug level back to 0.

Sun Grid Engine ¢ July 2001

CHAPTER 3

User’s Guide

Introduction

Sun Grid Engine (Computing in Distributed Networked Environments) is a load
management tool for heterogeneous, distributed computing environments. Sun Grid
Engine provides an effective method for distributing the batch workload among
multiple computational servers. In doing so, it increases the productivity of all of the
machines and simultaneously increases the number of jobs that can be completed in
a given time period. Also, by increasing the productivity of the workstations, the
need for outside computational resources is reduced.

Sun Grid Engine provides the user with the means to submit computationally
demanding task to the Sun Grid Engine system for transparent distribution of the
associated workload. In addition to batch jobs, interactive jobs and parallel jobs can
be submitted to Sun Grid Engine. Checkpointing programs are also supported.
Checkpointing jobs migrate from workstation to workstation without user
intervention on load demand. Comprehensive tools are provided for the monitoring
and controlling of Sun Grid Engine jobs.

Please refer to the Sun Grid Engine Quick Start Guide for an overview on the Sun Grid
Engine system, its features and components. The Sun Grid Engine Quick Start Guide
also contains a quick installation procedure for a small sample Sun Grid Engine
configuration and a glossary of terms commonly used in the Sun Grid Engine
manual set.

The Sun Grid Engine User’s Guide gives an introduction for the user to Sun Grid
Engine. The reader is pointed to the Sun Grid Engine Reference Manual for a detailed
discussion of all available Sun Grid Engine commands. Readers responsible for the
cluster administration are pointed to the Sun Grid Engine Installation and
Administration Guide for a description of the Sun Grid Engine cluster management
facilities.

161

Sun Grid Engine as well as UNIX Commands which can be found in manual pages
or the corresponding reference manuals are typeset in emphasized font throughout
the Sun Grid Engine User’s Guide. Command-line in- and output is also typeset in
emphasized font and newly introduced or defined terms are typeset in italics.

162

Sun Grid Engine User Types and
Operations

There are four user categories in Sun Grid Engine:

1. Managers:

Managers have full capabilities to manipulate Sun Grid Engine. By default, the
superusers of any machine hosting a queue have manager privileges.

2. Operators:

The operators can perform the same commands as the manager with the
exception of adding/deleting/modifying queues.

3. Owners:

The queue owners are allowed to suspend/enable the owned queues, but have no
further management permissions.

4. Users:

Users have certain access permissions as described in “User Access Permissions”
on page 171 but no cluster or queue management capabilities. The following table
adjoins Sun Grid Engine command capabilities to the different user categories:

Sun Grid Engine ¢ July 2001

TABLE3-1 Sun Grid Engine Command Capabilities and User Categories
Command Manager | Operator Owner User
gacct Full Full Own jobs only Own jobs only
galter | Full Full Own jobs only Own jobs only
gconf Full No modifications to | Show configurations Show
the system setup and access configurations and
permissions only access permissions
only
gdel Full Full Own jobs only Own jobs only
ghold Full Full Own jobs only Own jobs only
ghost Full Full Full Full
glogin Full Full Full Full
qmod Full Full Own jobs and owned Own jobs only
queues only
qmon Full No modifications to | No configuration No configuration
the system setup changes changes
grexec Full Full Full Full
gselect | Full Full Full Full
gsh Full Full Full Full
gstat Full Full Full Full
gsub Full Full Full Full

Navigating through the Sun Grid Engine
System

Overview on Host Functionality

The Host Configuration button in the gmon main menu allows you to retrieve
an overview on the functionality which is associated with the hosts in your Sun Grid
Engine cluster. However, unless you do not have Sun Grid Engine manager
privileges, you may not apply any changes to the presented configuration.

Chapter 3 User’s Guide

163

The host configuration dialogues are described in the Sun Grid Engine Installation and
Administration Guide in section “Sun Grid Engine Daemons and Hosts” on page 56.

The subsequent sections provide the commands to retrieve this kind of information
from the command-line.

The Master Host

The location of the master host should be transparent for the user as the master host
may migrate between the current master host and one of shadow master hosts at any
time. The file <codine_root>/<cell>/common/act gmaster contains the name of
the current master host for the Sun Grid Engine cell <cell>.

Execution Hosts

To display information about the hosts being configured as execution hosts in your
cluster please use the commands:

o\°

gconf -sel
gconf -se hostname
% ghost

o\°

The first command displays a list of the names of all hosts being currently
configured as execution hosts. The second command displays detailed information
about the specified execution host. The third command displays status and load
information about the execution hosts. Please refer to the host_conf manual page
for details on the information displayed via gconf and to the ghost manual page
for details on its output and further options.

Administration Hosts

The list of hosts with administrative permission can be displayed with the
command:

[)

% gconf -sh

164 Sun Grid Engine « July 2001

Submit Hosts

The list of submit host can be displayed with the command:

[)

% qgconf -ss

Queues and Queue Properties

In order to be able to optimally utilize the Sun Grid Engine system at your site, you
should become familiar with the queue structure and the properties of the queues
which are configured for your Sun Grid Engine system.

The Queue Control gmon Dialogue

The gmon queue control dialogue displayed and described in section “Controlling
Queues with gmon” on page 232 provides a quick overview on the installed queues
and their current status.

Show Properties with the gmon Object Browser

The gmon object browser can be used in combination with the queue control
dialogue to display the pertinent queue property information. The object browser is
opened upon clicking on the Browser icon button in the gmon main menu. By
selecting the Queue button and moving the mouse pointer over a queue icon in the
queue control dialogue, queue property information is displayed in a similar way as
described in the queue_conf manual page

The following figure shows an object browser example display with a queue
property print-out.

Chapter 3 User’'s Guide 165

166

OQMOM === Browser =[O x|

*EQB'NE 0bj ect Browser

BRI R R A R T A R T R :':.r ~Object
Queues: fangorn.q MLI
Host ¢ fangorn.genias.de

Typet BATCH Sie
Sequence Mr: 0]

tmpdir: femp
Shell: fhindosh Toh

Jokb Slots: 4

Job Slots Used: 0

Priority: 0 MI
Load Thresholds: np_load_avg = 1.7

Rerun Job: Falze

Hotify Job Interval: Q0300360

Processzors: UMDEF IHED

Soft Real Time: IMFIMITY

Hard Real Time: IMFIMITY

Soft Cpus: IMFIMITY

Hard Cpuz IMFIMITY

Soft File Size: IMFIMNITY

Hard File Size: IMFIMITY

Soft Data Size: IMFIMNITY

Hard Dats Size: THFIMITY

Soft Stack Size: IMFIMNITY

Hard Stack Size: THFIMITY

Soft Core Size: IMFIMNITY

Hard Core Size: IMFINITY

Soft Resident Set Size: IMFINITY

Hard Resident Set Size: IMFIMITY

Erakble Migration? Fal=ze

Min Cpu Interval : Q00500

Max Migration Time: 0

Max Mo Migration Time: Q0302 $00

Migration Load Thresholds: np_load_avg = &.C

Access List:

Mo Access List: Ql+m|
Complex List: | | -
B e R S o R S o ot E’Q?ﬁ&

Help

FIGURE 3-1 Browser queue output

Queue Information from the Command-line

In order to display a list of currently configured queues use the

[)

% qconf -sqgl

command.

Sun Grid Engine * July 2001

To display the properties of a particular queue please execute:

% gconf -sqgqueue_name

A detailed description of each property can be found in the queue conf manual
page (see section 5 of the Sun Grid Engine Reference Manual). Here is a short
introduction to the most important parameters:

m gname:
The queue name as requested.
m hostname:
The host of the queue.
m processors:
The processors of a multi processor system, to which the queue has access.
m qtype:
The type of job which is allowed to run in this queue. Currently, this is either

batch, interactive, checkpointing, parallel or any combination thereof or transfer
alternatively

m slots:
The number of jobs which may be executed concurrently in that queue.
m owner_list:

The owners of the queue as explained in section “Managers, Operators and
Owners” on page 173

m user_lists:

The user or group identifiers in the user access lists (see “User Access
Permissions” on page 171) enlisted under this parameter may access the queue.

m xuser_lists

The user or group identifiers in the user access lists (see “User Access
Permissions” on page 171) enlisted under this parameter may not access the
queue.

m complex_list

The complexes enlisted under this parameter are associated with the queue and
the attributes contained in these complexes contribute to the set of requestable
attributes for the queue (see “Requestable Attributes” on page 168).

m complex_values

Assigns capacities as provided for this queue for certain complex attributes (see
“Requestable Attributes” on page 168).

Chapter 3 User's Guide 167

Requestable Attributes

When submitting a Sun Grid Engine job a requirement profile of the job can be
specified. The user can specify attributes or characteristics of a host or queue which
the job requires to run successfully. Sun Grid Engine will map these job requirements
onto the host and queue configurations of the Sun Grid Engine cluster and will,
therefore, find the suitable hosts for a job.

The attributes which can be used to specify the job requirements are either related to
the Sun Grid Engine cluster (e.g. space required on a network shared disk), to the
hosts (e.g. operating system architecture), to the queues (e.g. permitted CPU time) or
the attributes are derived from site policies such as the availability of installed
software only on some hosts.

The available attributes include the queue property list (see “Queues and Queue
Properties” on page 165), the list of global and host related attributes (see “Complex
Types” on page 90 of the Sun Grid Engine Installation and Administration Guide) as
well as administrator defined attributes. For convenience, however, the Sun Grid
Engine administrator commonly chooses to define only a subset of all available
attributes to be requestable.

The attributes being currently requestable are displayed in the Requested

Resources sub-dialogue (see figure 3-2 on page 168) to the gmon Submit dialogue
(please refer to section “Submit Batch Jobs” on page 173 for detailed information on
how to submit jobs). They are enlisted in the Available Resources selection list.

Requested Resources
Parallel Job Request:
Hard Resources Available Resources
Ca.b arcH == zolaristd 3b arch
A h_wmen == 750M _Cab calendar Cancel
23 permaz == 1 D h_cpu Clear
M h_fsize : .
| M h_rss H!ei_p
SO hort
Hard Reguest Soft Reguest. 4 h_vmen
Soft Resources B hostnans
: : % nastran
123 permas
b ghame
M = _fsize
AT =_umEn
123 slots

FIGURE 3-2 Requested Resources dialogue

168 Sun Grid Engine « July 2001

To display the list of requestable attributes from the command-line, you first have to
display the list of currently configured complexes with the command:

[)

% qconf -scl

A so called complex contains the definition for a set of attributes. There are three
standard complexes: global (for the cluster global attributes), host (for the host
specific attributes and queue (for the queue property attributes). Any further
complex names printed if the above command is executed refers to an administrator
defined complex (see “The Complexes Concept” on page 88 in the Sun Grid Engine
Installation and Administration Guide or the complex format description in the section
5 of the Sun Grid Engine Reference Manual for more information on complexes).

To display the attributes of a particular complex please execute:

[

% gconf -sc complex_namel,...]

The output for the queue complex might for example look as shown in table 3-2 on
page 169.

TABLE3-2 “queue” complex

#name shortcut type value relop requestable consumable default
#

gname q STRING NONE == YES NO NONE
hostname h HOST unknown == YES NO NONE
tmpdir tmp STRING NONE == NO NO NONE
calendar c STRING NONE == YES NO NONE
priority pr INT 0 >= NO NO 0
seq_no seq INT 0 == NO NO 0
rerun re INT 0 == NO NO 0

s_rt s_rt TIME 0:0:0 <= NO NO 0:0:0
h_rt h_rt TIME 0:0:0 <= YES NO 0:0:0
s_cpu s_cpu TIME 0:0:0 <= NO NO 0:0:0
h_cpu h_cpu TIME 0:0:0 <= YES NO 0:0:0

Chapter 3 User's Guide 169

170

TABLE3-2 “queue” complex

s_data s_data MEMORY 0 <= NO NO 0
h_data h_data MEMORY 0 <= YES NO 0
s_stack s_stack MEMORY 0 <= NO NO 0
h_stack h_stack MEMORY 0 <= NO NO 0
s_core s_core MEMORY 0 <= NO NO 0
h_core h_core MEMORY 0O <= NO NO 0
S_ISS S_ISS MEMORY 0 <= NO NO 0
h_rss h_rss MEMORY 0 <= YES NO 0
min_cpu_interval mci TIME 0:0:0 <= NO NO 0:0:0
max_migr_time mmt TIME 0:0:0 <= NO NO 0:0:0
max_no_migr mnm TIME 0:0:0 <= NO NO 0:0:0

#--- # starts a comment but comments are not saved across edits ---

The column name is basically identical to the first column displayed by the
gconf -sqgcommand. The queue attributes cover most of the Sun Grid Engine
queue properties. The shortcut column contains administrator definable
abbreviations for the full names in the first column. Either the full name or the
shortcut can be supplied in the request option of a gsub command by the user.

The column requestable tells whether the Corresponding entry may be used in
gsub or not. Thus the administrator can, for example, disallow the cluster’s users to
request certain machines/queues for their jobs directly, simply by setting the entries
gname and/or ghostname to be not requestable. Doing this, implies that feasible
user requests can be met in general by multiple queues, which enforces the load
balancing capabilities of Sun Grid Engine.

The column relop defines the relation operation used in order to compute whether
a queue meets a user request or not. The comparison executed is:
m User Request relop Queue/Host/...-Property

If the result of the comparison is false, the user’s job cannot be run in the considered
queue. Let, as an example, the queue g1 be configured with a soft cpu time limit (see
the queue_conf and the setrlimit manual pages for a description of user process
limits) of 100 seconds while the queue 42 is configured to provide 1000 seconds soft
cpu time limit.

Sun Grid Engine ¢ July 2001

The columns consumables and default are meaningful for the administrator to
declare so called consumable resources (see section “Consumable Resources” on
page 96 of the Sun Grid Engine Installation and Administration Guide). The user
requests consumables just like any other attribute. The Sun Grid Engine internal
bookkeeping for the resources is however different.

Now, let a user submit the following request:

[

$ gsub -1 s_cpu=0:5:0 nastran.sh

The s_cpu=0:5:0 request (see the gsub manual page for details on the syntax) asks
for a queue which at least grants for 5 minutes of soft limit cpu time. Therefore, only

queues providing at least 5 minutes soft CPU runtime limit are setup properly to run
the job.

Note — Sun Grid Engine will only consider workload information in the scheduling
process if more than one queue is able to run a job.

User Access Permissions

Access to queues and other Sun Grid Engine facilities (e.g. parallel environment
interfaces - see section “Parallel Jobs” on page 196) can be restricted for certain users
or user groups by the Sun Grid Engine administrator.

Note — Sun Grid Engine automatically takes into account the access restrictions
configured by the cluster administration. The following sections are only important
if you want to query your personal access permission.

For the purpose of restricting access permissions, the administrator creates and
maintains so called access lists (or in short ACLs). The ACLs contain arbitrary user
and UNIX group names. The ACLs are then added to access-allowed- or access-
denied-lists in the queue or in the parallel environment interface configurations (see
queue conf or sge pe in Sun Grid Engine Reference Manual section 5,
respectively).

User’s belonging to ACLs which are enlisted in access-allowed-lists have permission
to access the queue or the parallel environment interface. User’s being members of
ACLs in access-denied-lists may not access the concerning resource.

Chapter 3 User's Guide 171

172

The Userset Configuration dialogue opened via the User Configuration
icon button in the gmon main menu allows you to query for the ACLs you have
access to via the Userset Configuration dialogue. Please refer to the section
“Managing User Access” on page 117 of the Sun Grid Engine Installation and
Administration Guide for details.

From the command-line a list of the currently configured ACLs can be obtained by
the command:

[)

% qconf -sul

The entries in one or multiple access lists are printed with the command:

[)

% gconf -suacl_namel,...]

The ACLs consist of user account names and UNIX group names with the UNIX
group names being identified by a prefixed “@” sign. This way you can determine to
which ACLs your account belongs.

Note — In case you have permission to switch your primary UNIX group with the
newgrp command, your access permissions may change.

You can now check for those queues or parallel environment interfaces to which you
have access or to which access is denied for you. Please query the queue or parallel
environment interface configuration as described in “Queues and Queue Properties”
on page 165 and “Configuring PEs with qmon” on page 145 in the Sun Grid Engine
Installation and Administration Guide. The access-allowed-lists are named
user_lists. The access-denied-list have the names xuser_lists. If your user
account or primary UNIX group is associated with a access-allowed-list you are
allowed to access the concerning resource. If you are associated with a access-
denied-list you may not access the queue or parallel environment interface. If both
lists are empty every user with a valid account can access the concerning resource.

Sun Grid Engine ¢ July 2001

Managers, Operators and Owners

A list of Sun Grid Engine managers can be obtained by:

[)

% gconf -sm

and a list of operators by:

[

% qconf -so

Note — The superuser of a Sun Grid Engine administration host is considered as
manager by default.

The users, which are owners to a certain queue are contained in the queue
configuration database as described in section “Queues and Queue Properties” on
page 165. This database can be retrieved by executing:

[)

% gconf -sqqueue_name

The concerning queue configuration entry is called owners.

Submit Batch Jobs

Shell Scripts

Shell scripts, also called batch jobs, are in principal a sequence of UNIX command-
line instructions assembled in a file. Script files are made executable by the UNIX
chmod command. If scripts are invoked, a proper command interpreter is started
(e.g. csh, tcsh, sh, or ksh) and each instruction is interpreted as typed in
manually by the user executing the script. Arbitrary UNIX commands, applications
and other shell scripts can be invoked from within a shell script.

Chapter 3 User’'s Guide 173

The appropriate command interpreter is either invoked as login-shell or not
depending whether its name (csh, tcsh, sh, ksh,...) is contained in the value list
of the login_shells entry of the Sun Grid Engine configuration in effect for the
particular host and queue executing the job.

Note — Note, that the Sun Grid Engine configuration may be different for the
various hosts and queues configured in your cluster. You can display the effective
configurations via the -sconf and -sqg options of the gconf command (refer to
the Sun Grid Engine Reference Manual for detailed information).

If the command interpreter is invoked as login-shell, the environment of your job
will be exactly the same as if you just have logged-in and executed the job-script. In
case of using csh for example, . login and .cshrc will be executed in addition to
the system default start-up resource files (e.g. something like /etc/login) while
only .cshrc will be executed if csh is not invoked as login-shell. Refer to the
manual page of the command interpreter of your choice for a description of the
difference between being invoked as login-shell or not.

Example Script File

Below is the listing of a simple shell script, which first compiles the application
flow from its Fortran77 source and then executes it:

#!/bin/csh

This is a sample script file for compiling and
running a sample FORTRAN program under Sun Grid Engine.

cd TEST

Now we need to compile the program 'flow.f' and
name the executable 'flow'.

£f77 flow.f -o flow

Your local system user’s guide will provide detailed information about building and
customizing shell scripts (you might also want to look at the sh, ksh, cshor tesh
manual page). In the following, the Sun Grid Engine User’s Guide will emphasize on
specialities which are to be considered in order to prepare batch scripts for Sun Grid
Engine.

In general, all shell scripts that you can execute from your command prompt by
hand can be submitted to Sun Grid Engine as long as they do not require a terminal
connection (except for the standard error and output devices, which are

174 Sun Grid Engine « July 2001

automatically redirected) and as long as they do not need interactive user
intervention. Therefore, the script given above is ready to be submitted to Sun Grid
Engine and will perform the desired action.

Submitting Sun Grid Engine Jobs

Submitting jobs with gmon (Simple Example)

The gmon Job Submission dialogue is either invoked from the gmon main menu
or from the gmon job control dialogue. Pressing the Submit icon button in the gmon
main menu opens the dialogue as well as pushing the Submit button in the Job
Control dialogue. The screen for entering General parameters looks as follows
(see section “Submitting Jobs with gqmon (Advanced Example)” on page 181 for a
discussion of the Advanced parameter screen).

Chapter 3 User's Guide 175

|[E] QMON === Job Submission

FIGURE 3-3 Job Submission dialogue

Throughout section “Submit Batch Jobs” we will only deal with batch jobs. So
please make sure that the default Batch icon is displayed on the top of the button
column on the right side of the screen. If an Interactive icon is displayed
instead, please click to the icon to change it back to the Batch icon. Please refer to
section “Submit Interactive Jobs” on page 200 for detailed information on interactive
jobs.

To submit a job you first have to select its script file. Use the file icon button on the
right side of the Job Script input window to open the following file selection box
and to select the job’s script file.

176 Sun Grid Engine ¢ July 2001

Select a File

Filter

:HvDl2#grd50£examplesfjobsf%

Directories Files
les/jobs/, = Hrexec_job,=sh s
les/jobss .. env—tester ,czh
Jobret_submitter,sh
pminiworm,sh
zleeper,sh
worker,sh
¥ 7
S ER R == ¥ JE—

Pleaze type or zelect a filename:

AvolZ/erd0/exanples/ jobs Aworker , sH

Ok Filter Cancel

FIGURE 3-4 Job script selection box

Quitting the file selection dialogue with the OK button will transfer the selected file
name to the Job Submission dialogue’s Job Script input window. Now just
click to the Submit button on the right side of the Job Submission screen to submit
the job to the Sun Grid Engine system.

Note = To get immediate feedback from the job submission you either need to have
the gmon Job Control dialogue open (see section “Monitoring and Controlling
Jobs with gmon” on page 216) or you need the gmon Object Browser opened
with the display messages facility activated (see section “Additional Information
with the gmon Object Browser” on page 226).

Submitting jobs with gmon (Extended Example)
The standard form of the Job Submission dialogue (see figure 3-15 on page 202)
provides the means to configure the following parameters for a job:

m A prefix string which is used for script embedded Sun Grid Engine submit
options (please refer to section “Active Sun Grid Engine Comments:” on page 187
for detailed information).

Chapter 3 User’s Guide 177

178

The job script to be used. If the associated icon button is pushed, a file selection
box is opened (see figure 3-4 on page 177)

The task ID range for submitting array jobs (see “Array Jobs” on page 194).

The name of the job (a default is set after a job script is selected).

Arguments to the job script.

The job’s initial priority value. Users without manager or operator permission
may only lower their initial priority value.

The time at which the job is to be considered eligible for execution. If the
associated icon button is pushed, a helper dialogue for entering the correctly
formatted time is opened (see figure 3-5 on page 179)

A flag indicating whether the job is to be executed in the current working
directory (for identical directory hierarchies between the submit and the potential
execution hosts only).

The command interpreter to be used to execute the job script (see “How a
Command Interpreter Is Selected” on page 185). If the associated icon button is
pushed. a helper dialogue for entering he command interpreter specifications of
the job is opened (see figure 3-6 on page 179).

A flag indicating whether the job’s standard output and standard error output are
to be merged together into the standard output stream.

The standard output redirection to be used (see “Output Redirection” on page
186). A default is used if nothing is specified. If the associated icon button is
pushed, a helper dialogue for entering the output redirection alternatives
(“Output redirection box” on page 179).

The standard error output redirection to be used. Very similar to the standard
output redirection.

The resource requirements of the job (see “Resource Requirement Definition” on
page 191). If resources are requested for a job, the icon button changes its color.
A selection list button defining whether the job can be restarted after being
aborted by a system crash or similar events and whether the restart behavior
depends on the queue or is demanded by the job.

A flag indicating whether the job is to be notified by SIGUSR1 or SIGUSR2 signals
respectively if it is about to be suspended or cancelled.

A flag indicating that either a user hold or a job dependency is to be assigned to
the job. The job is not eligible for execution as long as any type of hold is assigned
to it (see section “Monitoring and Controlling Sun Grid Engine Jobs” on page 216
for more information concerning holds). The input field attached to the Hold flag
allows restricting the hold to only a specific range of task of an array job (see
“Array Jobs” on page 194).

A flag forcing the job to be either started immediately if possible or being rejected.
Jobs are not queued, if this flag is selected.

Sun Grid Engine ¢ July 2001

r.Enlel a Slling

200012242359 ,59

FIGURE 3-5 At time input box

FIGURE 3-7 Output redirection box

The buttons at the right side of the Job Submission screen allow you to initiate
various actions:
m Submit

Submit the job as specified in the dialogue
m Edit

Edit the selected script file in an X-terminal either using vi or the editor as
defined in the SEDITOR environment variable.

Chapter 3 User's Guide 179

180

m Clear

Clear all settings in the Job Submission dialogue including any specified
resource requests.

m Reload

Reload the specified script file, parse any script embedded options (see section
“Active Sun Grid Engine Comments:” on page 187), parse default settings (see
section “Default Requests” on page 190) and discard intermediate manual
changes to these settings. This action is the equivalent to a Clear action with
subsequent specifications of the previous script file The option will only show an
effect if a script file is already selected.

m Save Settings

Save the current settings to a file. A file selection box is opened to select the file.
The saved files may either explicitly be loaded later-on (see below) or may be
used as default requests (see section “Default Requests” on page 190).

m Load Settings

Load settings previously saved with the Save Settings button (see above). The
loaded settings overwrite the current settings.

m Done

Closes the Job Submission dialogue.
m Help

Dialogue specific help.

Figure “Job submission example” on page 181 shows the submit dialogue with most
of the parameters set. The job configured in the example has the script file f1low. sh
which has to reside in the working directory of gmon. The job is called Flow and the
script file takes the single argument big.data. The job will be started with priority
-111 and is eligible for execution not before midnight of the 24th of December in
the year 2000. The job will be executed in the submission working directory and will
use the command interpreter tcsh. Finally standard output and standard error
output will be merged into the file £1low. out which will be created in the current
working directory also.

Sun Grid Engine ¢ July 2001

[Submit Job

FIGURE 3-8 Job submission example

Submitting Jobs with gmon (Advanced Example)

The Advanced submission screen allows definition of the following additional
parameters:

m A parallel environment interface to be used and the range of processes which is
required (see section “Parallel Jobs” on page 196).

m A set of environment variables which are to be set for the job before it is executed.
If the associated icon button is pushed, a helper dialogue for the definition of the
environment variables to be exported is opened (see figure 3-9 on page 183).
Environment variables can be taken from gmon’s runtime environment or
arbitrary environment variable can be defined.

Chapter 3 User's Guide 181

182

A list of name/value pairs called Context (see figure 3-10 on page 183), which
can be used to store and communicate job related information accessible
anywhere from within a Sun Grid Engine cluster. Context variables can be
modified from the command-line via the -ac/-dc/-sc options to gsub,
gsh, glogin or galter and can be retrieved via gstat -j.

The checkpointing environment to be used in case of a job for which
checkpointing is desirable and suitable (see section “Checkpointing Jobs” on page
211).

An account string to be associated with the job. The account string will be added
to the accounting record kept for the job and can be used for later accounting
analysis.

The Verify flag, which determines the consistency checking mode for your job.
To check for consistency of the job request Sun Grid Engine assumes an empty
and unloaded cluster and tries to find at least one queue in which the job could
run. Possible checking modes are:

Skip - no consistency checking at all.

» Warning - inconsistencies are reported, but the job is still accepted (may be
desired if the cluster configuration is supposed to change after submission of
the job).

» Error - inconsistencies are reported and the job will be rejected if any are
encountered.

s Just verify - The job will not be submitted, but an extensive report is
generated about the suitability of the job for each host and queue in the cluster.

The events at which the user is notified via electronic mail. The events

start/end/abortion/suspension of job are currently defined.

A list of electronic mail addresses to which these notification mails are sent. If the

associated icon button is pushed, a helper dialogue to define the mailing list is

opened (see figure 3-11 on page 184).

A list of queue names which are requested to be the mandatory selection for the

execution of the job. The Hard Queue List is treated identical to a

corresponding resource requirement as described in “Resource Requirement

Definition” on page 191.

A list of queue names which are requested to be a desirable selection for the

execution of the job. The Soft Queue List is treated identical to a

corresponding resource requirement as described in “Resource Requirement

Definition” on page 191.

A list of queue names which are eligible as so called master queue for a parallel

job. A parallel job is started in the master queue. All other queues to which the job

spawns parallel tasks are called slave queues.

An argument list which is forwarded directly to the submission client of a foreign

queuing system, in case the job is executed under the Sun Grid Engine QSI (see

section “The Sun Grid Engine Queuing System Interface (QSI)” on page 153 in the

Sun Grid Engine Installation and Administration Guide). The Transfer QS

Arguments have no effect if the job executed within the Sun Grid Engine system.

Sun Grid Engine ¢ July 2001

m An ID-list of jobs which need to be finished successfully before the job to be
submitted can be started. The newly created job depends on successful completion
of those jobs.

D Env-imnmen! Haliahle I__iﬁt

FIGURE 3-10 Job context definition

Chapter 3 User's Guide 183

Send mail to mail address

Mail address

Ok
mekEnyhost , com Cancel
nelother ,address Telete

Help

FIGURE 3-11 Mail address specification

Consequently, the job defined in figure 3-12 on page 185 has the following
additional characteristics as compared to the job definition from section “Submitting
jobs with gmon (Extended Example)” on page 177:

m The job requires the use of the parallel environment mpi. It needs at least 4

parallel processes to be created and can utilize up to 16 processes if available.

Two environment variables are set and exported for the job.

Two context variables are set.

The account string FLOW is to be added to the job accounting record.

The job is to be restarted if it fails in case of a system crash.

Warnings should be printed if inconsistencies between the job request and the

cluster configuration are detected

m Mail has to be sent to a list of two e-mail addresses as soon as the job starts and
finishes.

m DPreferably, the job should be executed in the queue big g.

184 Sun Grid Engine « July 2001

L Submit Job

Impi 4-16 =|

CLEAN SEMAPHORE=FALSE,MODEL_!

FIGURE 3-12 Advanced job submission example

Extensions to Regular Shell Scripts

There are some extensions to regular shell scripts, that will influence the behavior of
the script if running under Sun Grid Engine control. The extensions are:
m How a Command Interpreter Is Selected

The command interpreter to be used to process the job script file can be specified
at submit time (see for example page 179). However, if nothing is specified, the
configuration variable shell_start_mode determines how the command
interpreter is selected:

Chapter 3 User's Guide 185

186

s If shell start mode is set to unix behavior, the first line of the script
file if starting with a ,#!” sequence is evaluated to determine the command
interpreter. If the first line has no “#!” sequence, the Bourne-Shell sh is used
by default.

= For all other settings of shell_start_mode the default command interpreter
as configured with the shell parameter for the queue in which the job is
started is used (see section “Queues and Queue Properties” on page 165 and
the queue_conf manual page).

m Output Redirection

Since batch jobs do not have a terminal connection their standard output and
their standard error output has to be redirected into files. Sun Grid Engine allows
the user to define the location of the files to which the output is redirected, but
uses defaults if nothing is specified.

The standard location for the files is in the current working directory where the
jobs execute. The default standard output file name is <Job_name> . o<Job_id>, the
default standard error output is redirected to <Job_name> . e<Job_id>.
<Job_name> is either built from the script file name or can be defined by the user
(see for example the -N option in the gsub manual page). <Job_id> is a unique
identifier assigned to the job by Sun Grid Engine.

In case of array job tasks (see section “Array Jobs” on page 194), the task identifier
is added to these filenames separated by a dot sign. Hence the resulting standard
redirection paths are <Job_name>.o<Job_id> . <Task_id> and

<Job_name> . e<Job_id> . <Task_id>.

In case the standard locations are not suitable, the user can specify output
directions with gmon as shown in figure 3-12 and figure 3-7 or with the -e and
-o gsub options. Standard output and standard error output can be merged into
one file and the redirections can be specified on a per execution host basis. Le.,
depending on the host on which the job is executed, the location of the output
redirection files becomes different. To build custom but unique redirection file
paths, pseudo environment variables are available which can be used together
with the gsub -e and -o option

$HOME - home directory on execution machine.
SUSER - user ID of job owner.

$JOB_1ID - current job ID.

$JOB_NAME - current job name (see -N option).
SHOSTNAME - name of the execution host.
$TASK_1ID - array job task index number.

These variables are expanded during runtime of the job into the actual values and
the redirection path is built with them.

See the gsub manual page in section 1 of the Sun Grid Engine Reference Manual for
further details.

Sun Grid Engine ¢ July 2001

m Active Sun Grid Engine Comments:

Lines with a leading “#” sign are treated as comments in shell scripts. Sun Grid
Engine, however, recognizes special comment lines and uses them in a special
way: the rest of such a script line will be treated as if it were part of the command
line argument list of the Sun Grid Engine submit command gsub. The gsub
options supplied within these special comment lines are also interpreted by the
gmon submit dialogue and the corresponding parameters are preset when a script
file is selected.

The special comment lines per default are identified by the “#$” prefix string. The
prefix string can be redefined with the gsub -C option.

The described mechanism is called script embedding of submit arguments. The
following example script file makes use of script embedded command-line
options.

#!/bin/csh
#Force csh if not Sun Grid Engine default shell
#$ -S /bin/csh

This is a sample script file for compiling and

running a sample FORTRAN program under Sun Grid Engine.
We want Sun Grid Engine to send mail when the job begins
and when it ends.

#S -M EmailAddress
#S -m b, e

We want to name the file for the standard output
and standard error.

#s -o flow.out -j y
Change to the directory where the files are located.
cd TEST

Now we need to compile the program 'flow.f' and
name the executable 'flow'.

£77 flow.f -o flow
Once it is compiled, we can run the program.

flow

Chapter 3 User's Guide 187

188

m Environment Variables:

When a Sun Grid Engine job is run, a number of variables are preset into the job’s
environment, as listed below

ARC: The Sun Grid Engine architecture name of the node on which the job is
running. The name is compiled-in into the cod_execd binary.
CODINE_ROOT: The Sun Grid Engine root directory as set for cod_execd
before start-up or the default /usr/CODINE.

coD_CELL: The Sun Grid Engine cell in which the job executes.

COD_0O_HOME: The home directory path of the job owner on the host from
which the job was submitted.

COD_0_HOST: The host from which the job was submitted.

COD_0O_LOGNAME: The login name of the job owner on the host from which the
job was submitted.

COD_0_MAIL: The content of the MAIL environment variable in the context of
the job submission command.

coD_0_PATH: The content of the PATH environment variable in the context of
the job submission command.

coD_0_ sSHELL: The content of the SHELL environment variable in the context
of the job submission command.

COD_0_TZ: The content of the TZ environment variable in the context of the
job submission command.

COD_O_WORKDIR: The working directory of the job submission command.
COD_CKPT_ENV: Specifies the checkpointing environment (as selected with the
gsub -ckpt option) under which a checkpointing job executes.
COD_CKPT_DIR: Only set for checkpointing jobs. Contains path ckpt_dir
(see the checkpoint manual page) of the checkpoint interface.
COD_STDERR_PATH: the pathname of the file to which the standard error
stream of the job is diverted. Commonly used for enhancing the output with
error messages from prolog, epilog, parallel environment start/stop or
checkpointing scripts.

COD_STDOUT_PATH: the pathname of the file to which the standard output
stream of the job is diverted. Commonly used for enhancing the output with
messages from prolog, epilog, parallel environment start/stop or
checkpointing scripts.

COD_TASK_ID: The task identifier in the array job represented by this task.
ENVIRONMENT: Always set to BATCH. This variable indicates, that the script is
run in batch mode.

HOME: The user’s home directory path from the passwd file.

HOSTNAME: The hostname of the node on which the job is running.

JOB_ID: A unique identifier assigned by the cod_gmaster when the job was
submitted. The job ID is a decimal integer in the range to 99999.

JOB_NAME: The job name, built from the gsub script filename, a period, and the
digits of the job ID. This default may be overwritten by gsub -N.

LAST HOST: The name of the preceding host in case of migration of a
checkpointing job.

Sun Grid Engine ¢ July 2001

LOGNAME: The user’s login name from the passwd file.

NHOSTS: The number of hosts in use by a parallel job.

NQUEUES: The number of queues allocated for the job (always 1 for serial jobs)

NSLOTS: The number of queue slots in use by a parallel job.

PATH: A default shell search path of:

/usr/local/bin:/usr/ucb:/bin:/usr/bin

s PE: The parallel environment under which the job executes (for parallel jobs
only).

= PE yHOSTFILE The path of a file containing the definition of the virtual
parallel machine assigned to a parallel job by Sun Grid Engine. See the
description of the $pe_hostfile parameter in sge_pe for details on the format
of this file. The environment variable is only available for parallel jobs.

= QUEUE: The name of the queue in which the job is running.

= REQUEST: The request name of the job, which is either the job script filename
or is explicitly assigned to the job via the gsub -N option.

= RESTARTED: Indicates, whether a checkpointing job has been restarted. If set
(to value 1), the job has been interrupted at least once and is thus restarted.

» SHELL: The user’s login shell from the passwd file. Note: This is not

necessarily the shell in use for the job.

TMPDIR: The absolute path to the job’s temporary working directory.

TMP: The same as TMPDIR; provided for compatibility with NQS.

TZ: The time zone variable imported from cod_execd if set.

USER: The user’s login name from the passwd file.

Submitting Jobs from the Command-line

Jobs are submitted to Sun Grid Engine from the command-line using the gsub
command (see the corresponding Sun Grid Engine Reference Manual section). A
simple job as described in section “Submitting jobs with gmon (Simple Example)” on
page 175 could be submitted to Sun Grid Engine with the command:

[

% gsub flow.sh

if the script file name is flow.sh.

As opposed to this, the submit command which would yield the equivalent to the
gmon job submission described in section “Submitting jobs with gmon (Extended
Example)” on page 177 would look as follows:

% gsub -N Flow -p -111 -a 200012240000.00 -cwd \
-S /bin/tcsh -o flowout -j y flow.sh big.data

Chapter 3 User's Guide 189

190

Further command-line options can be added to constitute more complex requests.
The job request from section “Submitting Jobs with gmon (Advanced Example)” on
page 181, for example, would look as follows:

% gsub -N Flow -p -111 -a 200012240000.00 -cwd \
-S /bin/tcsh -o flowout -j y -pe mpi 4-16 \
-v SHARED MEM=TRUE, MODEL_ SIZE=LARGE \
-ac JOB_STEP=preprocessing, PORT=1234 \
-A FLOW -w w -r ¥y -m s,e -gq big g\
-M me@myhost.com,me@other.address \
flow.sh big.data

Default Requests

The last example in the above section demonstrates that advanced job requests may
become rather complex and unhandy, in particular if similar requests need to be
submitted frequently. To avoid the cumbersome and error prone task of entering
such command-lines, the user can either embed gsub options in the script files (see
“Active Sun Grid Engine Comments:” on page 187) or can utilize so called default
requests.

The cluster administration may setup a default request file for all Sun Grid Engine
users. The user, on the other hand, can create a private default request file located in
the user’s home directory as well as application specific default request files located
in the working directories.

Default request files simply contain the gsub options to be applied by default to the
Sun Grid Engine jobs in a single or multiple lines. The location of the cluster global
default request file is <codine_root>/<cell>/common/cod_request. The private
general default request file is located under SHOME/ .cod_request, while the
application specific default request files are expected under $cwd/ .cod_request.

If more than one of these files is available, they are merged into one default request
with the following order of precedence:

1. Global default request file.
2. General private default request file.

3. Application specific default request file.

Note = Script embedding and the gsub command-line has higher precedence than
the default request files. Thus, script embedding overwrites default request file
settings, and the gsub command-line options my overwrite these settings again.

Sun Grid Engine ¢ July 2001

Note — The gsub -clear option can be used at any time in a default request file,
in embedded script commands and in the gsub command-line to discard any
previous settings.

An example private default request file is presented below:

-A myproject -cwd -M me@myhost.com -m b,e
-r v -j y -S /bin/ksh

Unless overwritten, for all jobs of the given user the account string would be
myproject, the jobs would execute in the current working directory, mail notification
would be sent at the beginning and end of the jobs to me@myhost.com, the jobs are to
be restarted after system crashes, the standard output and standard error output are
to be merged and the ksh is to be used as command interpreter.

Resource Requirement Definition

In the examples so far the submit options used did not express any requirements for
the hosts on which the jobs were to be executed. Sun Grid Engine assumes that such
jobs can be run on any host. In practice, however, most jobs require certain
prerequisites to be satisfied on the executing host in order to be able to complete
successfully. Such prerequisites are enough available memory, required software to
be installed or a certain operating system architecture. Also, the cluster
administration usually imposes restrictions on the usage of the machines in the
cluster. The CPU time allowed to be consumed by the jobs is often restricted, for
example.

Sun Grid Engine provides the user with the means to find a suitable host for the
user’s job without a concise knowledge of the cluster’s equipment and its utilization
policies. All the user has to do is to specify the requirement of the user’s jobs and let
Sun Grid Engine manage the task of finding a suitable and lightly loaded host.

Resource requirements are specified via the so called requestable attributes
explained in section “Requestable Attributes” on page 168. A very convenient way
of specifying the requirements of a job is provided by gmon. The Requested
Resources dialogue, which is opened upon pushing the Requested Resources
icon button in the Job Submission dialogue (see for example figure 3-12 on
page 185) only displays those attributes in the Available Resource selection list
which currently are eligible. By double-clicking to an attribute, the attribute is added
to the Hard or Soft (see below) Resources list of the job and (except for
BOOLEAN type attributes, which are just set to True) a helper dialogue is opened to
guide the user in entering a value specification for the concerning attribute.

Chapter 3 User’s Guide 191

192

The example Requested Resources dialogue displayed below in figure 3-2
shows a resource profile for a job in which a solarisé4 host with an available
permas license offering at least 750 Megabytes of memory is requested. If more than
one queue fulfilling this specification is found, any defined soft resource
requirements are taken into account (none in our example). However, if no queue
satisfying both the hard and the soft requirements is found, any queue granting the
hard requirements is considered to be suitable.

Note = Only if more than one queue is suitable for a job, load criteria determine
where to start the job.

QMON

Requested Resources

Parallel Job Request:

Hard Resources Available Resources
ab h == larisbd lab arch i
g0 are =0 b=
M h_vmem == F50M _gb calendar Eé!ﬁ!je.l
123 permas == (D h_cpu i
M b _fzize : -
| h_rss H?iF
“ (O hort
Hard Regquest Soft REequest 4 h_vmem
B2 hostname

Soft Resources
: : "% mastran

123 permas
2b ghame
M = feize
A =_vmen

123 zlots

FIGURE 3-13 Requested Resources dialogue

Note — The INTEGER attribute permas is introduced via an administrator
extension to the “global” complex, the STRING attribute arch is imported from the
“host” complex while the MEMORY attribute h_vmem is imported from the “queue”
complex (see section “Requestable Attributes” on page 168)

Sun Grid Engine ¢ July 2001

An equivalent resource requirement profile can as well be submitted from the gsub
command-line:

[)

% gsub -1 arch=solaris64,h vmem=750M, permas=1 \
permas.sh

Note — The implicit -hard switch before the first -1 option has been skipped.

The notation 750M for 750 Megabytes is an example for the Sun Grid Engine
quantity syntax. For those attributes requesting a memory consumption you can
specify either integer decimal, floating point decimal, integer octal and integer
hexadecimal numbers appended by the so called multipliers:

m k

multiplies the value by 1000.
n K

multiplies the value by 1024.
mm

multiplies the value by 1000 times 1000.
s M

multiplies the value by 1024 times 1024.

Octal constants are specified by a leading 0 (zero) and digits ranging from 0 to 7
only. Specifying a hexadecimal constant requires to prepend the number by Ox and
to use digits ranging from 0 to 9, a to f and A to F. If no multipliers are appended the
values are considered to count as bytes. If using floating point decimals, the
resulting value will be truncated to an integer value.

For those attributes imposing a time limit one can specify the time values in terms of
hours, minutes or seconds and any combination. The hours, minutes and seconds are
specified in decimal digits separated by colons. A time of 3:5:11 is translated to
11111 seconds. If a specifier for hours, minutes or seconds is 0 it can be left out if the
colon remains. Thus a value of :5: is interpreted as 5 minutes. The form used in the
Requested Resources dialogue above is an extension, which is only valid within
gmon.

Chapter 3 User's Guide 193

How Sun Grid Engine Allocates Resources

As shown in the last section, it is important for the user to know, how Sun Grid
Engine processes resource requests and how resources are allocated by Sun Grid
Engine. The following provides a schematic view of Sun Grid Engine’s resource
allocation algorithm:

Read in and parse all default request files (see section “Default Requests” on page
190). Process the script file for embedded options (see section “Active Sun Grid
Engine Comments:” on page 187). All script embedding options are read, when the
job is submitted regardless of their position in the script file. Now read and parse all
requests from the command line.

As soon as all qsub requests are collected, Hard and soft requests are processed
separately (the hard first). The requests are evaluated Corresponding to the
following order of precedence:

= from left to right of the script/default request file
= from top to bottom of the script/default request file
= from left to right of the command line

In other words, the command line can be used to override the embedded flags.

The resources requested hard are allocated. If a request is not valid, the submit is
rejected. If one or more requests cannot be met at submit-time (e.g. a requested
queue is busy) the job is spooled and will be re-scheduled at a later time. If all hard
requests can be met, they are allocated and the job can be run.

The resources requested soft are checked. The job can run even if some or all of these
requests cannot be met. If multiple queues (already meeting the hard requests)
provide parts of the soft resources list (overlapping or different parts) Sun Grid
Engine will select the queues offering the most soft requests.

The job will be started and will cover the allocated resources.

It is useful to gather some experience on how argument list options and embedded
options or hard and soft requests influence each other by experimenting with small
test scriptfiles executing UNIX commands like hostname or date.

Array Jobs

Parametrized and repeated execution of the same set of operations (contained in a
job script) is an ideal application for the Sun Grid Engine array job facility. Typical
examples for such applications are found in the Digital Content Creation industries
for tasks like rendering. Computation of an animation is split into frames, in this
example, and the same rendering computation can be performed for each frame
independently.

194 Sun Grid Engine « July 2001

The array job facility offers a convenient way to submit, monitor and control such
applications. Sun Grid Engine, on the other hand, provides an efficient
implementation of array jobs, handling the computations as an array of independent
tasks joined into a single job. The tasks of an array job are referenced through an
array index number. The indices for all tasks span an index range for the entire array
job which is defined during submission of the array job by a single qsub command.

An array job can be monitored and controlled (e.g. suspended, resumed or
cancelled) as a total or by individual task or subset of tasks, in which case the
corresponding index numbers are suffixed to the job ID to reference the tasks. As
tasks execute (very much like regular jobs), they can use the environment variable
$COD_TASK_1ID to retrieve their own task index number and to access input data
sets designated for this task identifier.

The following is an example of how to submit an array job from the command-line:

[)

% gsub -1 h cpu=0:45:0 -t 2-10:2 render.sh data.in

The -t option defines the task index range. In this case, 2-10:2 specifies that 2 is the
lowest and 10 is the highest index number while only every second index (the :2
part of the specification) is used. Thus the array job consists of 5 tasks with the task
indices 2, 4, 6, 8, and 10. Each task requests a hard CPU time limit of 45 minutes
(the -1 option) and will execute the job script render.sh once being dispatched and
started by Sun Grid Engine. The tasks can use $COD_TASK_1ID to find out whether
they are task 2, 4, 6, 8, or 10 and they can use their index number to find their input
data record in the data file data.in.

The submission of array jobs from the GUI gmon works identically to how it was
described in previous chapters. The only difference is, that the Job Tasks input
window shown in figure 3-8 on page 181 needs to contain the task range
specification with the identical syntax as for the gsub -t option. Please refer to the
gsub manual page in the Sun Grid Engine Reference Manual for detailed information
on the array index syntax.

The sections “Monitoring and Controlling Sun Grid Engine Jobs” and “Controlling
Sun Grid Engine Jobs from the Command-line” as well as the Sun Grid Engine
Reference Manual sections about gstat, ghold, grls, gmod, and gdel contain
the pertinent information about monitoring and controlling Sun Grid Engine jobs in
general and array jobs in particular.

Note = Array jobs offer full access to all Sun Grid Engine facilities known for
regular jobs. In particular they can be parallel jobs at the same time or can have
interdependencies with other jobs.

Chapter 3 User's Guide 195

196

Parallel Jobs

Sun Grid Engine provides means to execute parallel jobs using arbitrary message
passing environments such as PVM or MPI (see the PVM User’s Guide and the MPI
User’s Guide for details) or shared memory parallel programs on multiple slots in
single queues or distributed across multiple queues and (for distributed memory
parallel jobs) across machines. An arbitrary number of different parallel environment
(PE) interfaces may be configured concurrently at the same time.

The currently configured PE interfaces can be displayed with the commands:

[)

% gconf -spl

[)

% gconf -sp pe_name

The first command prints a list of the names of the currently available PE interfaces.
The second command displays the configuration of a particular PE interface. Please
refer to the sge_pe manual page for details on the PE configuration.

Alternatively, the PE configurations can be queried with the gmon Parallel
Environment Configuration dialogue (see section “Configuring PEs with
gmon” on page 145 in the Sun Grid Engine Installation and Administration Guide). The
dialogue is opened upon pushing the PE Config icon button in the gmon main
menu.

The example from section “Submitting Jobs with gmon (Advanced Example)” on
page 181 already defines a parallel job requesting the PE interface mpi (for message
passing interface) to be used with at least 4 but up to (and preferably) 16 processes.
The icon button to the right of the parallel environment specification window can be
used to pop-up a dialogue box to select the desired parallel environment from a list
of available PEs (see figure 3-14). The requested range for the number of parallel
tasks initiated by the job can be added after the PE name in the PE specification
window of the advanced submission screen.

Sun Grid Engine ¢ July 2001

E Select an Item B

FAvailable Parallel Enwvirorments

CrE
mei

Select a Parallel Environment

mpii

[k | Cancel |

FIGURE 3-14 PE selection

The command-line submit command corresponding to the parallel job specification
described above is given in section “Submitting Jobs from the Command-line” on
page 189 and shows how the gsub -pe option has to be used to formulate an
equivalent request. The gsub manual page in the Sun Grid Engine Reference Manual
provides more detail on the -pe syntax.

It is important to select a suitable PE interface for a parallel job. PE interfaces may
utilize no or different message passing systems, they may allocate processes on
single or multiple hosts, access to the PE may be denied to certain users, only a
specific set of queues may be used by a PE interface and only a certain number of
queue slots may be occupied by a PE interface at any point of time. You should
therefore ask the Sun Grid Engine administration for the available PE interface(s)
best suited for your type(s) of parallel jobs.

You can specify resource requirements as explained in section “Resource
Requirement Definition” on page 191 together with your PE request. This will
further reduce the set of eligible queues for the PE interface to those queues also
fitting the resource requirement definition you specified. If, for example, the
command:

% gsub -pe mpi 1,2,4,8 -1 nastmn,arch:osfnastmn.par

is submitted, the queues suitable for this job are those which are associated to the PE
interface mpi by the PE configuration and also satisfy the resource requirement
specification specified by the gsub -1 option.

Chapter 3 User's Guide 197

198

Note — The Sun Grid Engine PE interface facility is highly configurable. In
particular, the Sun Grid Engine administration can configure the PE start-up and
stop procedures (see the sge_pe manual page) to support site specific needs. The
gsub -v and -V options to export environment variables may be used to pass
information from the user who submits the job to the PE start-up and stop
procedures. Please ask the Sun Grid Engine administration if you are required to
export certain environment variables.

Submitting Jobs to Other Queueing Systems

Some sites do not wish to install Sun Grid Engine on all machines for which batch
access is provided, but instead use other queueing systems already available on
these hosts. Typical examples are machines which do not belong to the same
organization, and thus cannot be maintained by the Sun Grid Engine administration,
or machines utilizing a very special queuing system, interfacing specifically
designed accounting facilities and the like (very common for so called
Supercomputers).

In these cases, Sun Grid Engine offers a general interface to such queueing systems.
Access to the hosting queueing system (QS) is provided by the concept of transfer
queues. A transfer queue is defined by the value TRANSFER in the type field of the
queue configuration (see section “Queues and Queue Properties” on page 165).

Jobs to be forwarded to another QS can be submitted like any other Sun Grid Engine
job. Resource requirements are requested for the job via gmon or the gsub command
just like for normal Sun Grid Engine jobs. It is even possible that such a job is
processed either within the Sun Grid Engine system or passed to a QS, depending on
the available and best suited resources.

Sometimes it is necessary to supply QS special switches with the job. To perform
this, there are two methods available in the Sun Grid Engine QS interface:

1. Add the options to the script file by usage of special comments similar to the “#$”
comments in Sun Grid Engine (of course the QS must support such special
comments).

2. The special gsub option -gs_args may be used to pass such options.
Everything behind the -gs_args option is considered as option to the QS until
the -gs_end option is encountered. A corresponding input field for such
arguments is provided in the qmon submission dialogue as well (see section
“Submitting Jobs with gmon (Advanced Example)” on page 181).

Sun Grid Engine ¢ July 2001

How Sun Grid Engine Jobs Are Scheduled

Job Scheduling

Job Priorities

Concerning the order of scheduling precedence of different jobs a first-in-first-out
(fifo) rule is applied by default. Le., all pending (not yet scheduled) jobs are inserted
in a list, with the first submitted job being the head of the list, followed by the
second submitted job, and so on. The job submitted first will be attempted to be
scheduled first. If at least one suitable queue is available, the job will be scheduled.
Sun Grid Engine will try to schedule the second job afterwards no matter whether
the first has been dispatched or not.

This order of precedence among the pending jobs may be overruled by the cluster
administration via a priority value being assigned to the jobs. The actual priority
value can be displayed by using the gstat command (the priority value is
contained in the last column of the pending jobs display entitled P; refer to section
“Monitoring with gstat” on page 227 for details). The default priority value
assigned to the jobs at submit time is 0. The priority values are positive and negative
integers and the pending jobs list is sorted Correspondingly in the order of
descending priority values. Le., by assigning a relatively high priority value to a job,
the job is moved to the top of the pending jobs list. Jobs with negative priority
values are inserted even after jobs just submitted. If there are several jobs with the
same priority value, the fifo rule is applied within that priority value category.

Equal-Share-Scheduling

The fifo rule sometimes leads to problems, especially if user’s tend to submit a series
of jobs almost at the same time (e.g. via shell-script issuing one submit after the
other). All jobs being submitted afterwards and being designated to the same group
of queues will have to wait a very long time. Equal-share-scheduling avoids this
problem by sorting jobs of users already owning a running job to the end of the
precedence list. The sorting is performed only among jobs within the same priority
value category. Equal-share-scheduling is activated if the Sun Grid Engine scheduler
configuration entry user_sort (refer to the sched_conf manual page for details)
is set to TRUE.

Chapter 3 User's Guide 199

Queue Selection

If submitted jobs cannot be run, because requested resources like a queue of a certain
group are not available at submit-time, it would be disadvantageous to immediately
dispatch such jobs to a certain queue Corresponding to the load average situation.
Imagine, a suitable queue is busy with a job, that is terribly slowed down by an
infrequently responding I/0O device. The machine, hosting this queue, might offer
the lowest load average in the Sun Grid Engine cluster, however, the currently
executing job might also continue to run for a very long time.

Therefore, Sun Grid Engine does not dispatch jobs requesting generic queues if they
cannot be started immediately. Such jobs will be marked as spooled at the
cod_gmaster, which will try to re-schedule them from time to time. Thus, such jobs
are dispatched to the next suitable queue, that becomes available.

As opposed to this, jobs which are requested by name to a certain queue, will go
directly to this queue regardless whether they can be started or they have to be
spooled. Therefore, viewing Sun Grid Engine queues as computer science batch
queues is only valid for jobs requested by name. Jobs submitted with generic
requests use the spooling mechanism of cod_gmaster for queueing, thus utilizing a
more abstract and flexible queuing concept.

If a job is scheduled and multiple free queues meet its resource requests, the job is
usually dispatched to the queue (among the suitable) belonging to the least loaded
host. By setting the Sun Grid Engine scheduler configuration entry
queue_sort_method to segno, the cluster administration may change this load
dependent scheme into a fixed order algorithm: the queue configuration entry
seq_no is used to define a precedence among the queues assigning the highest
priority to the queue with the lowest sequence number.

200

Submit Interactive Jobs

Submitting interactive jobs instead of batch jobs is useful in situations where your
job requires your direct input to influence the results of the job. This is typically the
case for X-windows applications, which are interactive by definition, or for tasks in
which your interpretation of immediate results is required to steer the further
computation.

Three methods exist in Sun Grid Engine to create interactive jobs:
1. glogin - a telnet like session is started on a host selected by Sun Grid Engine.

2. grsh - the equivalent of the standard Unix rsh facility. Either a command is
executed remotely on a host selected by Sun Grid Engine or a rlogin session is
started on a remote host if no command was specified for execution.

Sun Grid Engine ¢ July 2001

3. gsh/gmon - an xtermis brought up from the machine executing the job with the
display set corresponding to your specification or the setting of the DISPLAY
environment variable. If the DISPLAY variable is not set and if no display
destination was defined specifically, Sun Grid Engine directs the xterm to the 0.0
screen of the X server on the host from which the interactive job was submitted.

Note — To function correctly, all the facilities need proper configuration of Sun Grid
Engine cluster parameters. The correct xterm execution paths have to be defined for
gsh and interactive queues have to be available for this type of jobs. Please contact
your system administrator whether your cluster is prepared for interactive job
execution.

The default handling of interactive jobs differs from the handling of batch jobs in
that interactive jobs are not queued if they cannot be executed by the time of
submission. This is to indicate immediately, that not enough appropriate resources
are available to dispatch an interactive job right after it was submitted. The user is
notified in such cases that the Sun Grid Engine cluster is too busy currently.

This default behavior can be changed with the -now no option to gsh, glogin and
grsh. If this option is given, interactive jobs are queued like batch jobs. Using -now
yes, batch jobs submitted with gsub also can be handled like interactive jobs and
are either dispatched for execution immediately or are rejected.

Note — Interactive jobs can only be executed in queues of the type INTERACTIVE
(please refer to “Configuring Queues” on page 75 in the Sun Grid Engine Installation
and Administration Guide for details).

The subsequent sections outline the usage of the glogin and gsh facilities. The
grsh command is explained in a broader context in chapter “Transparent Remote
Execution” on page 204.

Submit Interactive Jobs with gmon

The only type of interactive jobs which can be submitted from gmon are those
bringing up an xterm on a host selected by Sun Grid Engine.

By clicking to the icon on top of the button column at the right side of the Job
Submission dialogue until the Interactive icon gets displayed, the job
submission dialogue is prepared for submitting interactive jobs (see figure 3-15 on
page 202 and figure 3-16 on page 203). The meaning and the usage of the selection
options in the dialogue is the same as explained for batch jobs in section “Submitting
Sun Grid Engine Jobs” on page 175. The basic difference is that several input fields
are set insensitive because they do not apply for interactive jobs.

Chapter 3 User’s Guide 201

[5 ubmit Job

FIGURE 3-15 Interactive Job Submission dialogue General

202 Sun Grid Engine ¢ July 2001

b Submit Job

FIGURE 3-16 Interactive Job Submission dialogue Advanced

Submitting Interactive Jobs with gsh

Qsh is very similar to gsub and supports several of the gsub options as well as the

additional switch -display to direct the display of the xterm to be invoked (please
refer to the gsh manual page in the Sun Grid Engine Reference Manual for details).

The following command will start a xterm on any available Sun Solaris 64bit
operating system host.

% gsh -1 arch=solaris64

Chapter 3 User's Guide 203

Submitting Interactive Jobs with glogin

The glogin command can be used from any terminal or terminal emulation to
initiate an interactive session under the control of Sun Grid Engine. The following
command will locate a low loaded host with Star-CD license available and with at
least one queue providing a minimum of 6 hours hard CPU time limit.

[)

% glogin -1 star-cd=1,h cpu=6:0:0

Note = Depending on the remote login facility configured to be used by Sun Grid
Engine you may be forced to enter your user name and/or password at a login
prompt.

Transparent Remote Execution

Sun Grid Engine provides a set of closely related facilities supporting transparent
remote execution of certain computational tasks. The core tool for this functionality
is the grsh command described in section “Remote Execution with grsh” on page
204. Building on top of grsh, two high level facilities - gt csh and gmake - allow
the transparent distribution of implicit computational tasks via Sun Grid Engine,
thereby enhancing the standard Unix facilities make and csh. Qtcsh is explained in
section “Transparent Job Distribution with gtcsh” on page 206 and gmake is
described in section “Parallel Makefile Processing with qmake” on page 208.

Remote Execution with grsh

Qrsh is built around the standard rsh facility (see the information provided in
<codine_root>/3rd_party for details on the involvement of rsh) and can be used
for various purposes:

m to provide remote execution of interactive applications via Sun Grid Engine
comparable to the standard Unix facility rsh (also called remsh for HP-UX).

m to offer interactive login session capabilities via Sun Grid Engine similar to the
standard Unix facility rlogin (note that glogin is still required as a Sun Grid
Engine representation of the Unix telnet facility).

m to allow for the submission of batch jobs which, upon execution, support terminal
I/0 (standard/error output and standard input) and terminal control.

204 Sun Grid Engine * July 2001

m to offer a means for submitting a standalone program not embedded in a
shell-script.

m to provide a batch job submission client which remains active while the job is
pending or executing and which only finishes if the job has completed or has been
cancelled.

m to allow for the Sun Grid Engine-controlled remote execution of job tasks (such as
the concurrent tasks of a parallel job) within the framework of the dispersed
resources allocated by parallel jobs (see section “Tight Integration of PEs and Sun
Grid Engine” on page 152 of the Sun Grid Engine Installation and Administration
Guide).

By virtue of all these capabilities, grsh is the major enabling infrastructure for the
implementation of the gtcsh and the gmake facilities as well as for the so called
tight integration of Sun Grid Engine with parallel environments such as MPI or
PVM.

Qrsh Usage

The general form of the grsh command is:

% grsh [options] program|shell-script [arguments] \
[> stdout file] [>&2 stderr file] [< stdin file]

Qrsh understands almost all options of gsub and provides only a few additional
ones. These are:
m -now yes|no

controls whether the job is scheduled immediately and rejected if no appropriate
resources are available, as usually desired for an interactive job — hence it is the
default, or whether the job is queued like a batch job, if it cannot be started at
submission time.

m -inherit

grsh does not go through the Sun Grid Engine scheduling process to start a job-
task, but it assumes that it is embedded inside the context of a parallel job which
already has allocated suitable resources on the designated remote execution host.
This form of grsh commonly is used within gmake and within a tight parallel
environment integration. The default is not to inherit external job resources.

m -verbose

presents output on the scheduling process. Mainly intended for debugging
purposes and therefore switched off per default.

Chapter 3 User's Guide 205

Transparent Job Distribution with gtcsh

Qtcsh is a fully compatible replacement for the widely known and used Unix
C-Shell (csh) derivative tcsh (gmake is built around tcsh - see the information
provided in <codine_root>/3rd_party for details on the involvement of tcsh). It
provides a command-shell with the extension of transparently distributing execution
of designated applications to suitable and lightly loaded hosts via Sun Grid Engine.
Which applications are to be executed remotely and which requirements apply for
the selection of an execution host is defined in configuration files called .gtask.

Transparent to the user, such applications are submitted for execution to Sun Grid
Engine via the grsh facility. Since grsh provides standard output, error output and
standard input handling as well as terminal control connection to the remotely
executing application, there are only three noticeable differences between executing
such an application remotely as opposed to executing it on the same host as the
shell:

1. The remote host may be much better suited (more powerful, lower loaded,
required hard/software resources installed) than the local host, which may not
allow execution of the application at all. This is a desired difference, of course.

2. There will be a small delay incurred by the remote startup of the jobs and by their
handling through Sun Grid Engine.

3. Administrators can restrict the usage of resources through interactive jobs (qrsh)
and thus through gtcsh. If not enough suitable resources are available for an
application to be started via the grsh facility or if all suitable systems are
overloaded, the implicit grsh submission will fail and a corresponding error
message will be returned (“not enough resources ... try later”).

In addition to the standard use, gt csh is a suitable platform for third party code and
tool integration. Using gtcsh in its single-application execution form

gtecsh -c appl_name inside integration environments presents a persistent interface
that almost never has to be changed. All the required application, tool, integration,
site and even user specific configurations are contained in appropriately defined
.gtask files. A further advantage is that this interface can be used from within shell
scripts of any type, C programs and even Java applications.

Qtcsh Usage

Invocation of gtcsh is exactly the same as for tcsh. Qtcsh extends teshin
providing support for the . gtask file and by offering a set of specialized shell built-
in modes.

206 Sun Grid Engine * July 2001

The .gtask file is defined as follows: Each line in the file has the format:

[)

% [!lappl name grsh options

U!//

The optional leading exclamation mark defines the precedence between
conflicting definitions in a cluster global . gtask file and the personal . gtask file
of the gtcsh user. If the exclamation mark is missing in the cluster global file, an
eventually conflicting definition in the user file will overrule. If the exclamation
mark is in the cluster global file, the corresponding definition cannot be overwritten.

The rest of the line specifies the name of the application which, when typed on a
command line in a gtcsh, will be submitted to Sun Grid Engine for remote
execution, and the options to the grsh facility, which will be used and which define
resource requirements for the application.

Note — The application name must appear in the command line exactly like defined
in the . gtask file. If it is prefixed with an absolute or relative directory
specification it is assumed that a local binary is addressed and no remote execution
is intended.

Note = Csh aliases, however, are expanded before a comparison with the
application names is performed. The applications intended for remote execution can
also appear anywhere in a gt csh command line, in particular before or after
standard I/0O redirections.

Hence, the following examples are valid and meaningful syntax:

.gtask file
netscape -v DISPLAY=myhost:0

grep -1 h=filesurfer

Chapter 3 User's Guide 207

208

Given this . gtask file, the following gt csh command lines:

netscape
~/mybin/netscape

cat very_big_file | grep pattern | sort | unig

will implicitly result in:

grsh -v DISPLAY=myhost:0 netscape
~/mybin/netscape

cat very big file | grsh -1 h=filesurfer grep

Qtcsh can operate in different modes influenced by switches where each of them
can be on or off:

m Local or remote execution of commands (remote is default).

m Immediate or batch remote execution (immediate is default).

m Verbose or non-verbose output (non-verbose is default).

The setting of these modes can be changed using option arguments of gt csh at start
time or with the shell builtin command grshmode at runtime. See the gtcsh
manual page in the Sun Grid Engine Reference Manual for more information.

Parallel Makefile Processing with gmake

Qmake is a replacement for the standard Unix make facility. It extends make by its
ability to distribute independent make steps across a cluster of suitable machines.
Qmake is built around the popular GNU-make facility gmake. See the information
provided in <codine_root>/3rd_party for details on the involvement of gmake.

To ensure that a complex distributed make process can run to completion, gmake
first allocates the required resources in an analogous form like a parallel job. Qmake
then manages this set of resources without further interaction with the Sun Grid
Engine scheduling. It distributes make steps as resources are or become available via
the grsh facility with the -inherit option enabled.

Sun Grid Engine ¢ July 2001

Since grsh provides standard output, error output and standard input handling as
well as terminal control connection to the remotely executing make step, there are
only three noticeable differences between executing a make procedure locally or
using gqmake:

1. Provided that the individual make steps have a certain duration and that there
are enough independent make steps to be processed, the parallelization of the
make process will be sped up significantly. This is a desired difference, of course.

2. With each make step to be started up remotely there will be an implied small
overhead caused by grsh and the remote execution as such.

3. To take advantage of the make step distribution of gmake, the user has to specify
as a minimum the degree of parallelization, i.e. the number of concurrently
executable make steps. In addition, the user can specify the resource
characteristics required by the make steps, such as available software licenses,
machine architecture, memory or CPU-time requirements.

The most common use in general of make certainly is the compilation of complex
software packages. This may not be the major application for gmake, however.
Program files are often quite small (as a matter of good programming practice) and
hence compilation of a single program file, which is a single make step, often only
takes a few seconds. Furthermore, compilation usually implies a lot of file access
(nested include files) which may not be accelerated if done for multiple make steps
in parallel, because the file server can become the bottleneck effectively serializing
all the file access. So a satisfactory speed-up of the compilation process sometimes
cannot be expected.

Other potential applications of gmake are more appropriate. An example is the
steering of the interdependencies and the workflow of complex analysis tasks
through make-files. This is common in some areas, such as EDA, and each make step
in such environments typically is a simulation or data analysis operation with non-
negligible resource and computation time requirements. A considerable speed-up
can be achieved in such cases.

Qmake Usage

The command-line syntax of gmake looks very similar to the one of grsh:

[)

% gmake [-pe pe_name pe_range] [further options] \
-- [gnu-make-options] [target]

Note — The -inherit option is also supported by gmake as described further
down below.

Chapter 3 User's Guide 209

210

Specific attention has to be paid on the usage of the -pe option and its relation to
the gmake -j option. Both options can be used to express the amount of
parallelism to be achieved. The difference is that gmake provides no possibility with
-J to specify something like a parallel environment to use. Hence, gmake makes the
assumption, that a default environment for parallel makes is configured which is
called make. Furthermore, gmake’s -j allows no specification of a range, but only
for a single number. gmake will interpret the number given with -j as a range of
1-<given_number>. As opposed to this, -pe permits the detailed specification of all
these parameters. Consequently, the following command-line examples are identical

[)

% gmake -- -j 10

[)

% gmake -pe make 1-10 --

while the following command-lines cannot be expressed via the -j option:

% gmake -pe make 5-10,16
% gmake -pe mpi 1-99999

Apart from the syntax, gmake supports two modes of invocation: interactively from
the command-line (without - inherit) or within a batch job (with -inherit).
These two modes initiate a different sequence of actions:

1. interactive — when gmake is invoked on the command-line, the make process as
such is implicitly submitted to Sun Grid Engine via grsh taking the resource
requirements specified in the gmake command-line into account. Sun Grid
Engine then selects a master machine for the execution of the parallel job associated
with the parallel make job and starts the make procedure there. This is necessary,
because the make process can be architecture dependent and the required
architecure is specified in the gmake command-line. The gmake process on the
master machine then delegates execution of individual make steps to the other
hosts which have been allocated by Sun Grid Engine for the job and which are
passed to gmake via the parallel environment hosts file.

2. batch - in this case, gmake appears inside a batch script with the -inherit
option (if the -inherit option was not present, a new job would be spawned as
described for the first case above). This results in gmake making use of the
resources already allocated to the job into which gmake is embedded. It will use
grsh -inherit directly to start make steps. When calling gmake in batch
mode, the specification of resource requirements or -pe and -j options is
ignored.

Sun Grid Engine ¢ July 2001

Note — Also single CPU jobs have to request a parallel environment

(gmake -pe make 1 --).If no parallel execution is required, call gmake with
gmake command-line syntax (without Sun Grid Engine options and “--"), it will
behave like gmake.

Please refer to the gmake manual page in the Sun Grid Engine Reference Manual for
further detail on gmake.

Checkpointing Jobs

User Level Checkpointing

Lots of application programs, especially those, which normally consume
considerable CPU time, have implemented checkpointing and restart mechanisms to
increase fault tolerance. Status information and important parts of the processed
data are repeatedly written to one or more files at certain stages of the algorithm.
These files (called restart files) can be processed if the application is aborted and
restarted at a later time and a consistent state can be reached, comparable to the
situation just before the checkpoint. As the user mostly has to deal with the restart
files, e.g. in order to move them to a proper location, this kind of checkpointing is
called user level checkpointing.

For application programs which do not have an integrated (user level) checkpointing
an alternative can be to use a so called checkpointing library which can be provided by
the public domain (see the Condor project of the University of Wisconsin for
example) or by some hardware vendors. Re-linking an application with such a
library installs a checkpointing mechanism in the application without requiring
source code changes.

Kernel Level Checkpointing

Some operating systems provide checkpointing support inside the operating system
kernel. No preparations in the application programs and no re-linking of the
application is necessary in this case. Kernel level checkpointing is usually applicable
for single processes as well as for complete process hierarchies. IL.e., a hierarchy of
interdependent processes can be checkpointed and restarted at any time. Usually
both, a user command and a C-library interface are available to initiate a checkpoint.

Chapter 3 User’s Guide 211

212

Sun Grid Engine supports operating system checkpointing if available. Please refer
to the Sun Grid Engine Release Notes for information on the currently supported
kernel level checkpointing facilities.

Migration of Checkpointing Jobs

Checkpointing jobs are interruptible at any time, since their restart capability
ensures that only few work already done must be repeated. This ability is used to
build Sun Grid Engine’s migration and dynamic load balancing mechanism. If
requested, checkpointing Sun Grid Engine jobs are aborted on demand and migrated
to other machines in the Sun Grid Engine pool thus averaging the load in the cluster
in a dynamic fashion. Checkpointing jobs are aborted and migrated for the following
reasons:

m The executing machine exceeds a load value configured to force a migration
(migr load thresholds - see the queue_ conf manual page in the Sun Grid
Engine Reference Manual).

m The executing queue or the job is suspended, either explicitly by gmod or gmon or
automatically if a suspend threshold for the queue (see section “Configuring
Load and Suspend Thresholds” on page 79 of the Sun Grid Engine Installation
and Administration Guide) has been exceeded and if the checkpoint occasion
specification for the job (see section “Submit/Monitor/Delete a Checkpointing
Job” on page 213) includes the suspension case.

You can identify a job which is about to migrate by the state m for migrating in the
gstat output. A migrating job moves back to cod_gmaster and is subsequently
dispatched to another suitable queue if any is available.

Composing a Checkpointing Job Script

Shell scripts for kernel level checkpointing show no difference from regular shell
scripts.

Shell scripts for user level checkpointing jobs differ from regular Sun Grid Engine
batch scripts only in their ability to properly handle the case if they get restarted.
The environment variable RESTARTED is set for checkpointing jobs which are
restarted. It can be used to skip over sections of the job script which should be
executed during the initial invocation only.

Sun Grid Engine ¢ July 2001

Thus, a transparently checkpointing job script may look similar to the one given
below:

Example Script File

#!/bin/sh
#Force /bin/sh in Sun Grid Engine
#$ -S /bin/sh

Test if restarted/migrated
if [SRESTARTED = 0]; then
0 = not restarted
Parts to be executed only during the first
start go in here
set up grid
fi

Start the checkpointing executable
fem
#End of scriptfile

It is important to note that the job script is restarted from the beginning if a user
level checkpointing job is migrated. The user is responsible for directing the program
flow of the shell-script to the location where the job was interrupted and thus
skipping those lines in the script which are critical to be executed more than once.

Note — Kernel level checkpointing jobs are interruptible at any point of time and
also the embracing shell script is restarted exactly from the point where the last
checkpoint occurred. Therefore, the RESTARTED environment variable are of no
relevance for kernel level checkpointing jobs.

Submit/Monitor/Delete a Checkpointing Job

Submitting a checkpointing job works the same way as for regular batch scripts
except for the gsub -ckpt and -c switches, which request a checkpointing
mechanism and define the occasions at which checkpoints have to be generated for
the job. The -ckpt option takes one argument which is the name of the
checkpointing environment (see section “Checkpointing Support” on page 140 in the

Chapter 3 User’s Guide 213

Sun Grid Engine Installation and Administration Guide) to be used. The -c option is
not mandatory and also takes one argument. It can be used to overwrite the
definitions of the when parameter in the checkpointing environment configuration
(see the checkpoint manual page in the Sun Grid Engine Reference Manual for
details).

The argument to the -c option can be one of the following one letter selection (or any
combination thereof) or a time value alternatively:
H N

no checkpoint is performed. This has highest precedence
H S

A checkpoint is only generated if the cod_execd on the jobs host is shut down.
H M

Generate checkpoint at minimum CPU interval defined in the corresponding
queue configuration (see the min_cpu_interval parameter in the
queue_conf manual page).

" X
A checkpoint is generated if the job gets suspended.
m interval

Generate checkpoint in the given interval but not more frequently than defined by
min cpu_interval (see above). The time value has to be specified as hh:mm:ss
(two digit hours, minutes and seconds separated by colon signs).

The monitoring of checkpointing jobs just differs from regular jobs by the fact, that
these jobs may migrate from time to time (signified by state m for migrating in the
output of gstat, see above) and, therefore, are not bound to a single queue.
However, the unique job identification number stays the same as well as the job
name.

Deleting checkpointing jobs works just the same way as described in section
“Controlling Sun Grid Engine Jobs from the Command-line” on page 230.

Submit a Checkpointing Job with gmon

Submission of checkpointing jobs via qmon is identical to the submission of regular
batch jobs with the addition of specifying an appropriate checkpointing
environment. As explained in “Submitting Jobs with qmon (Advanced Example)” on
page 181 the Job Submission dialogue provides an input window for the
checkpointing environment associated with a job. Aside to the input window there is
an icon button, which opens the selection dialogue displayed in figure 3-17 on
page 215. You can select a suitable checkpoint environment from the list of available

214 Sun Grid Engine * July 2001

ones with it. Please ask your system administrator for information on the properties
of the checkpointing environments installed at your site or refer to section
“Checkpointing Support” on page 140.

Select an Item Ed

Ayallable checkpoint objects
| g erdefined

CTIT
Select a checkpoint object

;E’PJI

| Ok | Comeel| Hup |

FIGURE 3-17 Checkpoint Object Selection

File System Requirements

When a checkpointing library based user level or kernel level checkpoint is written,
a complete image of the virtual memory the process or job to be checkpointed covers
needs to be dumped. Sufficient disk space must be available for this purpose. If the
checkpointing environment configuration parameter ckpt_dir is set the
checkpoint information is dumped to a job private location under ckpt_dir. If
ckpt_dir is set to NONE, the directory in which the checkpomtmg job was started is
used. Please refer to the manual page checkpoint in the Sun Grid Engine Reference
Manual for detailed information about the checkpointing environment configuration.

Note = You should start a checkpointing job with the gsub -cwd script if
ckpt dir is set to NONE.

An additional requirement concerning the way how the file systems are organized is
caused by the fact, that the checkpointing files and the restart files must be visible on
all machines in order to successfully migrate and restart jobs. Thus NFS or a similar
file system is required. Ask your cluster administration, if this requirement is met for
your site.

Chapter 3 User’s Guide 215

If your site does not run NFS or if it is not desirable to use it for some reason, you
should be able to transfer the restart files explicitly at the beginning of your shell
script (e.g. via rcp or £tp) in the case of user level checkpointing jobs.

216

Monitoring and Controlling Sun Grid
Engine Jobs

In principle, there are three ways to monitor submitted jobs: with the Sun Grid
Engine graphical user’s interface gmon, from the command-line with the gstat
command or by electronic mail.

Monitoring and Controlling Jobs with gmon

The Sun Grid Engine graphical user’s interface gmon provides a dialogue
specifically designed for controlling jobs. The Job Control dialogue is opened by
pushing the Job Control icon button in the gmon main menu.

The general purpose of this dialogue is to provide the means to monitor all running,
pending and a configurable number of finished jobs known to the system or parts
thereof. The dialogue can also be used to manipulate jobs, i.e. to change their
priority, to suspend, resume and to cancel them. Three list environments are
displayed, one for the running jobs, another for the pending jobs waiting to be
dispatched to an appropriate resource and the third for recently finished jobs. You
can select between the three list environments via clicking to the corresponding tab
labels at the top of the screen.

In its default form (see figure 3-18 on page 220) it displays the columns JobId,
Priority, JobName and Queue for each running and pending job. The set of
information displayed can be configured with a customization dialogue (see figure
3-18 on page 220), which is opened upon pushing the Customize button in the
Job Control dialogue. With the customization dialogue it is possible to select
further entries of the Sun Grid Engine job object to be displayed and to filter the jobs
of interest. The example on page 220 selects the additional fields MailTo and
Submit Time. The Job Control dialogue displayed in figure 3-18 on page 220
depicts the enhanced look after the customization has been applied in case of the
Finished Jobs list. The example of the filtering facility in figure 3-21 on page 223
selects only those jobs owned by ferstl which run or are suitable for architecture
solarisé4. The resulting Job Control dialogue showing Pending Jobs is
displayed in figure 3-22 on page 224.

Sun Grid Engine ¢ July 2001

Note — The Save button the customize dialogue displayed on page page 220, for
example, stores the customizations into the file . gmon_preferences in the user’s
home directory and thus redefines the default appearance of the job control
dialogue.

The Job Control dialogue in figure 3-22 on page 224 is also an example for how
array jobs are displayed in qmon.

Jobs can be selected (for later operation) with the following mouse/key
combinations:

m Clicking to a job with the left mouse button while the Control key is pressed starts
a selection of multiple jobs.

m Clicking to another job with the left mouse button while the Shift key is pressed
selects all jobs in between and including the job at the selection start and the
current job.

m Clicking to a job with the left mouse button while the Control and the Shift key
are pressed toggles the selection state of a single job.

The selected jobs can be suspended, resumed (unsuspended), deleted, held back
(and released), re-prioritized and modified (Qalter) through the Corresponding
buttons at the right side of the screen.

The actions suspend, unsuspend, delete, hold, modify priority and modify job may
only be applied to a job by the job owner or by Sun Grid Engine managers and
operators (see “Managers, Operators and Owners” on page 173). Only running jobs
can be suspended/resumed and only pending jobs can be held back and modified
(in priority as well as in other attributes).

Suspending a job means the equivalent to sending the signal SIGSTOP to the process
group of the job with the UNIX kill command. Le., the job is halted and does no
longer consume CPU time. Unsuspending the job sends the signal SIGCONT thereby
resuming the job (see the ki1l manual page of your system for more information on
signalling processes).

Note = Suspension, unsuspension and deletion can be forced, i.e. registered with
cod_gmaster without notification of the cod_execd controlling the job(s), in case
the corresponding cod_execd is unreachable, e.g. due to network problems. Use the
Force flag for this purpose.

If using the Hold button on a selected pending job, the Set Hold sub-dialogue is
opened (see figure 3-18 on page 220). It allows to set and to reset user, system and
operator holds. User holds can be set/reset by the job owner as well as Sun Grid
Engine operators and managers. Operator holds can be set/reset by managers and
operator and manager holds can be set/reset by managers only. As long as any hold

Chapter 3 User’s Guide 217

218

is assigned to a job it is not eligible for execution. An alternate way to set/reset
holds are the galter, ghold and grls commands (see the corresponding
manual pages in Sun Grid Engine Reference Manual).

If the Priority button is pressed another sub-dialogue is opened (figure 3-18 on
page 220), which allows to enter the new priority of the selected pending jobs. The
priority determines the order of the jobs in the pending jobs list and the order in
which the pending jobs are displayed by the Job Control dialogue. Users can only
set the priority in the range between 0 and -1024. Sun Grid Engine operators and
managers can also increase the priority level up to the maximum of 1023 (see section
“Job Priorities” on page 127 in the Sun Grid Engine Installation and Administration
Guide for details about job priorities).

The Qalter button, when pressed for a pending job, opens the Job Submission
screen described in “Submitting Sun Grid Engine Jobs” on page 175 with all the
entries of the dialogue set corresponding to the attributes of the job as defined
during submission. Those entries, which cannot be changed are set insensitive. The
others may be edited and the changes are registered with Sun Grid Engine by
pushing the Qalter button (a replacement for the Submit button) in the Job
Submission dialogue.

The verify flag in the Job Submission screen has a special meaning when used
in the “qalter” mode. You can check pending jobs for their consistency and
investigate why they have not been scheduled yet. You just have to select the desired
consistency checking mode for the Verify flag and push the Qalter button. The
system will display warnings on inconsistencies depending on the selected checking
mode. Please refer to “Submitting Jobs with gmon (Advanced Example)” on page 181
and the -w option in the galter manual page for further information.

Another method for checking why jobs are still pending is to select a job and click on
the “Why ?” button of the Job Control dialogue. This will open the Object
Browser dialogue and display a list of reasons which prevented the Sun Grid
Engine scheduler from dispatching the job in its most recent pass. An example
browser screen displaying such a message is shown in figure 3-25 on page 226.

Note — The “Why ?” button only delivers meaningful output if the scheduler
configuration parameter schedd_job_info is set to true (see sched_conf in the
Sun Grid Engine Reference Manual).

Note = The displayed scheduler information relates to the last scheduling interval. It
may not be accurate anymore by the time you investigate for reasons why your job
has not been scheduled.

Sun Grid Engine ¢ July 2001

The Clear Error button can be used to remove an error state from a selected
pending job, which had been started in an earlier attempt, but failed due to a job
dependent problem (e.g., insufficient permissions to write to the specified job output
file).

Note — Error states are displayed using a red font in the pending jobs list and
should only be removed after correcting the error condition, e.g., via galter.

Note = Such error conditions are automatically reported via electronic mail, if the
job requests to send e-mail in cases it is aborted (e.g. via the gsub -m a option).

To keep the information being displayed up-to-date, gmon uses a polling scheme to
retrieve the status of the jobs from cod_gmaster. An update can be forced by
pressing the Refresh button.

Finally, the button provides a link to the gmon Job Submission dialogue (see
figure 3-8 on page 181 for example).

Chapter 3 User’s Guide 219

=== Job Control

FIGURE 3-18 Job Control dialogue - standard form

220 Sun Grid Engine ¢ July 2001

IEjJ0B CUSTOMIZE

Script =t SubmitTime
SubmitTime MailTo
StartTime

ScheduleTime

Account3tring

stderrPaths
Hold
Mergelutput
MailOptions
MailTo
Motify
stdoutPaths
Restart
JohArgs

FIGURE 3-19 Job Control customization

Chapter 3 User's Guide 221

=== Job Control

FIGURE 3-20 Job Control dialogue Finished Jobs - enhanced

222 Sun Grid Engine ¢ July 2001

(FlJOB CUSTOMIZE

FIGURE 3-21 Job Control filtering

Chapter 3 User's Guide 223

[QMON === Job Control

1

—
e |
_puny |
Qoo |
R
o |
—

FIGURE 3-22 Job Control dialogue - after filtering

224 Sun Grid Engine ¢ July 2001

FIGURE 3-23 Job Control holds

[|j Enter an Integer_ x|

FIGURE 3-24 Job Control priority definition

Chapter 3 User's Guide 225

QMON = Browser (0] %]

kwm! Object Browser

1 J Object__

scheduling info} guete "fangorn,q" dropped because it is temporarily not svailshle
guete "hilbur,q" dropped because it ls overloaded o
guete "dvain,q" dropped because it iz dizabled
gueue "gloin,s" dropped because it iz disabled

(-1 arch=nec} cannot run at host "DURIN,genize,de” becauze it offers only hl:iarch=gund
{-1 arch=nec) camnot run at host "ARAGORN,geniae.de’ hecauze it offers only hliarct
{-1 arch=nec! camnot run at host “LI5,genias,oe” because it offers only hlzarch=gl:
(-1 arch=rec) camnat run at host "EOWYN,genias,de” hecause it offers only hltarch=t

FIE[

=l

—

b

Messages

H

Cle

e =i Help

P = o

FIGURE 3-25 Browser displaying scheduling information

Additional Information with the gmon Object
Browser

The gmon Object Browser can be used to quickly retrieve additional information
on Sun Grid Engine jobs without a need to customize the Job Control dialogue as
explained in section “Monitoring and Controlling Jobs with gmon” on page 216.

The Object Browser is opened upon pushing the Browser icon button in the

gmon main menu. The browser displays information about Sun Grid Engine jobs if
the Job button in the browser is selected and if the mouse pointer is moved over a
job’s line in the Job Control dialogue (see figure 3-18 on page 220 for example).

The browser screen in figure 3-26 on page 227 gives an example of the information
displayed in such a situation.

226 Sun Grid Engine * July 2001

AMON *= Browser A=l E3

ﬁmmz Object Brovser

Hard Resources; h_vnen=10M,nastran=1,h_cpue3: i-I| Object
Soft. Resources: arch=znlarishd, shared-dizk=1G
... stdout |
"""""""""""""""""""""" stderr |
Joh; 130

Job Name: star-cd e
Job Soript: star,zh Ih
Duner ferstl

Priority: 0

Cell; default | M

Checkpoint Ohject:
Hard Resources: h_unen=10M,h_cpu=313
Soft. Resources: arch=solarized,shared-disk=15

Uar_|
PP R (D]

FIGURE 3-26 Object Browser - job

Monitoring with gstat

Submitted jobs can also be monitored with the Sun Grid Engine gstat command.
There are two basic forms of the gstat command available:

[

% gstat

[)

% gstat -£

The first form provides an overview on the submitted jobs only (see table 3-3 on
page 229). The second form includes information on the currently configured queues
in addition (see table 3-4 on page 229).

In the first form, a header line indicates the meaning of the columns. The purpose of
most of the columns should be self-explanatory. The state column, however,
contains single character codes with the following meaning: r for running, s for
suspended, g for queued and w for waiting (see the gstat manual page in the Sun
Grid Engine Reference Manual for a detailed explanation of the gstat output format).

Chapter 3 User's Guide 227

228

The second form is divided into two sections, the first displaying the status of all
available queues, the second (entitled with the - PENDING JOBS -

separator) shows the status of the cod_qgmaster job spool area. The first line of the
queue section defines the meaning of the columns with respect to the enlisted
queues. The queues are separated by horizontal rules. If jobs run in a queue they are
printed below the associated queue in the same format as in the gstat command in
its first form. The pending jobs in the second output section are also printed as in
gstat’s first form.

The following columns of the queue description require some explanation:
m gtype

The queue type - one of B(atch), I(nteractive), P(arallel) and C(heckpointing) or
combinations thereof or alternatively T(ransfer).

m used/free
The count of used/free job slots in the queue.
m states

The state of the queue - one of u(nknown), a(laram), s(uspended), d(isabled),
E(rror) or combinations thereof.

Again, the gstat manual page contains a more detailed description of the gstat
output format.

Various additional options to the gstat command enhance the functionality in both
versions. The -r option can be used to display the resource requirements of
submitted jobs. Furthermore the output may be restricted to a certain user, to a
specific queue and the -1 option may be used to specify resource requirements as
described in section “Resource Requirement Definition” on page 191 for the gsub
command. If resource requirements are used, only those queues (and the jobs
running in these queues) are displayed which match the resource requirement
specification in the gstat command-line.

Sun Grid Engine ¢ July 2001

TABLE3-3 gstat example output

job-ID prior name user state submit/start at queue function
231 0 hydra craig r 07/13/96 20:27:15 durin.qg MASTER
232 0 compile penny r 07/13/96 20:30:40 durin.qg MASTER
230 0 blackhole don r 07/13/96 20:26:10 dwain.qg MASTER
233 0 mac elaine r 07/13/96 20:30:40 dwain.qg MASTER
234 0 golf shannon r 07/13/96 20:31:44 dwain.qg MASTER
236 5 word elaine qw 07/13/96 20:32:07
235 0 andrun penny qw 07/13/96 20:31:43
TABLE3-4 gstat -f example output
gueuename gtype used/free load_avg arch states
dg BIP 0/1 99.99 sun4 au
durin.qg BIP 2/2 0.36 sun4
231 0 hydra craig r 07/13/96 20:27:15 MASTER
232 0 compile penny r 07/13/96 20:30:40 MASTER
dwain.qg BIP 3/3 0.36 sun4
230 0 blackhole don r 07/13/96 20:26:10 MASTER
233 0 mac elaine r 07/13/96 20:30:40 MASTER
234 0 golf shannon r 07/13/96 20:31:44 MASTER
fq BIP 0/3 0.36 sun4

H##HHHHHHH R R R R R R R

- PENDING JOBS - PENDING JOBS - PENDING JOBS - PENDING JOBS - PENDING JOBS

H##HHHHHHH R R R R R R R

236

235

5 word

0 andrun

elaine

penny

aw

aw

07/13/96

07/13/96

20:32:

20:31:

07

43

Chapter 3 User's Guide 229

230

Monitoring by Electronic Mail

The gsub -m switch requests electronic mail to be sent to the user submitting a job
or to the email address(es) specified by the -M flag if certain events occur (see the
gsub manual page for a description of the flags). An argument to the -m option
specifies the events. The following selections are available:

m b

Mail is sent at the beginning of the job.
a e
Mail is sent at the end of the job.
m a
Mail is sent when the job is aborted (e.g. by a gdel command).
H S
Mail is sent when the job is suspended.
N

No mail is sent (the default).

Multiple of these options may be selected with a single -m option in a comma
separated list.

The same mail events can be configured by help of the qmon Job Submission
dialogue, see section “Submitting Jobs with gqmon (Advanced Example)” on page
181.

Controlling Sun Grid Engine Jobs from the
Command-line

The section “Monitoring and Controlling Jobs with gmon” on page 216 explains how
Sun Grid Engine jobs can be deleted, suspended and resumed with the Sun Grid
Engine graphical user’s interface gmon.

From the command-line, the gdel command can be used to cancel Sun Grid Engine
jobs, regardless whether they are running or spooled. The gmod command provides
the means to suspend and unsuspend (resume) jobs already running.

For both commands, you will need to know the job identification number, which is
displayed in response to a successful gsub command. If you forget the number it
can be retrieved via gstat (see section “Monitoring with gstat” on page 227).

Sun Grid Engine ¢ July 2001

Included below are several examples for both commands:

o\°

adel job_id

gdel -f£ job_id1, job_id2
amod - s job_id

amod -us -f job_id1, job_id2
amon -s job_id.task_id_range

o o oP

o\

In order to delete, suspend or unsuspend a job you must be either the owner of the
job, a Sun Grid Engine manager or operator (see “Managers, Operators and Owners”
on page 173).

For both commands the -£ force option can be used to register a status change for
the job(s) at cod_gmaster without contacting cod_execd in case cod_execd is
unreachable, e.g. due to network problems. The - £ option is intended for usage by
the administrator. In case of gdel, however, users can be enabled to force deletion of
their own jobs if the flag ENABLE FORCED_QDEL in the cluster configuration
gmaster params entry is set (see the sge_conf manual page in the Sun Grid
Engine Reference Manual for more information).

Job Dependencies

The most convenient way to build a complex task often is to split the task into sub-
tasks. In these cases sub-tasks depend on the successful completion of other sub-
tasks before they can get started. An example is that a predecessor task produces an
output file which has to be read and processed by a successor task.

Sun Grid Engine supports interdependent tasks with its job dependency facility. Jobs
can be configured to depend on the successful completion of one or multiple other
jobs. The facility is enforced by the gsub -hold jid option. A list of jobs can be
specified upon which the submitted job depends. The list of jobs can also contain
subsets of array jobs. The submitted job will not be eligible for execution unless all
jobs in the dependency list have completed successfully.

Chapter 3 User’s Guide 231

Controlling Queues

As already stated in section “Queues and Queue Properties” on page 165, the
owners of queues have permission to suspend/unsuspend or disable/enable
queues. This is desirable, if these users need certain machines from time to time for
important work and if they are affected strongly by Sun Grid Engine jobs running in
the background.

There are two ways to suspend or enable queues. The first, using the gmon Queue
Control dialogue and the second utilizing the gmod command.

Controlling Queues with gmon
Clicking on the Queue Control icon button in the gmon main menu brings up the

Queue Control dialogue. An example screen is displayed in “Queue Control
dialogue” on page 233.

232 Sun Grid Engine * July 2001

Ej QMON *** Queue Control

FIGURE 3-27 Queue Control dialogue

The purpose of the Queue Control dialogue is to provide a quick overview on the
resources being available and on the activity in the cluster. It also provides the
means to suspend/unsuspend and to disable/enable queues as well as to configure
queues. Each icon being displayed represents a queue. If the main display area is
empty, no queues are configured. Each queue icon is labelled with the queue name,
the name of the host on which the queue resides and the number of job slots being
occupied. If a cod_execd is running on the queue host and has already registered
with cod_gmaster a picture on the queue icon indicates the queue host’s operating
system architecture and a color bar at the bottom of the icon informs about the status
of the queue. A legend on the right side of the Queue Control dialogue displays
the meaning of the colors.

Chapter 3 User's Guide 233

For those queues, the user can retrieve the current attribute, load and resource
consumption information for the queue and implicitly of the machine which hosts a
queue by clicking to the queue icon with the left mouse button while the shift key
on the keyboard is pressed. This will pop-up an information screen similar to the
one displayed in figure 3-28 on page 235 (see there for a detailed description).

Queues are selected by clicking with the left mouse on the button or into a
rectangular area surrounding the queue icon buttons. The Delete,
Suspend/Unsuspend or Disable/Enable buttons can be used to execute the
corresponding operation on the selected queues. The suspend/unsuspend and
disable/enable operation require notification of the corresponding cod_execd. If
this is not possible (e.g. because the host is down) a cod_gmaster internal status
change can be forced if the Force toggle button is switched on.

If a queue is suspended, the queue is closed for further jobs and the jobs already
executing in the queue are suspended as explained in section “Monitoring and
Controlling Jobs with gmon” on page 216. The queue and its jobs are resumed as
soon as the queue is unsuspended.

Note = If a job in a suspended queue has been suspended explicitly in addition, it
will not be resumed if the queue is unsuspended. It needs to be unsuspended
explicitly again.

Queues which are disabled are closed, however, the jobs executing in those queues
are allowed to continue. To disable a queue is commonly used to ,drain” a queue.
After the queue is enabled, it is eligible for job execution again. No action on still
executing jobs is performed.

The suspend /unsuspend and disable/enable operations require queue owner or Sun
Grid Engine manager or operator permission (see section “Managers, Operators and
Owners” on page 173).

The information displayed in the Queue Control dialogue is update periodically.
An update can be forced by pressing the Refresh button. The Done button closes
the dialogue.

The Customize button allows you to select the queues to be displayed via a filter
operation. The sample screen in figure 3-29 on page 236 shows the selection of only
those queues which run on hosts belonging to architecture osf4 (i.e Compaq Unix
version 4). The Save button in the customize dialogue allows you to store your
settings in the file .qmon_preferences in your home directory for standard
reactivation on later invocations of gmon.

For the purpose of configuring queues a sub-dialogue is opened when pressing the
Add or Modify button on the right side of the Queue Control screen (see section
“Configuring Queues with gmon” on page 75 in the Sun Grid Engine Installation and
Administration Guide for details).

234 Sun Grid Engine * July 2001

In the following, a detailed description of the queue attribute screen displayed below
is given:

[Attributes for queue hiIhur.q

FIGURE 3-28 Queue attribute display

All attributes attached to the queue (including those being inherited from the host or
cluster) are listed in the Attribute column. The Slot-Limits/Fixed
Attributes column shows values for those attributes being defined as per queue
slot limits or as fixed complex attributes. The Load (scaled) /Consumable
column informs about the reported (and if configured scaled) load parameters (see
section “Load Parameters” on page 113 in the Sun Grid Engine Installation and
Administration Guide) and about available resource capacities based on the Sun Grid
Engine consumable resources facility (see section “Consumable Resources” on page
96).

Note — Load reports and consumable capacities may overwrite each other, if a load
attribute is configured as a consumable resource. The minimum value of both, which
is used in the job dispatching algorithm, is displayed.

Chapter 3 User's Guide 235

Note — The displayed load and consumable values currently do not take into
account load adjustment corrections as described in section “Execution Hosts” on
page 62 of the Sun Grid Engine Installation and Administration Guide.

.EQUEUE CUSTOMIZE

FIGURE 3-29 Queue Control customization

Controlling Queues with gmod

Section “Controlling Sun Grid Engine Jobs from the Command-line” on page 230
explained how the Sun Grid Engine command gmod can be used to
suspend/unsuspend Sun Grid Engine jobs. However, the gmod command
additionally provides the user with the means to suspend/unsuspend or
disable/enable queues.

236 Sun Grid Engine ¢ July 2001

The following commands are examples how gmod is to be used for this purpose:

mod -s g_name

mod -us -f g_namel, q_name?2
mod -d g_name

mod -e q_namel, q_name2, q_name3

The first two commands suspend or unsuspend queues, while the third and fourth
command disable and enable queues. The second command uses the gmod - £
option in addition to force registration of the status change in cod_gmaster in case
the corresponding cod_execd is not reachable, e.g. due to network problems.

Note — Suspending/unsuspending as well as disabling/enabling queue requires
queue owner, Sun Grid Engine manager or operator permission (see section
“Managers, Operators and Owners” on page 173).

Note = You can use gmod commands with crontab or at jobs.

Customizing gmon

The look and feel of gmon is largely defined by a specifically designed resource file.
Reasonable defaults are compiled-in and a sample resource file is available under
<codine_root>/qmon /Qmon.

The cluster administration may install site specific defaults in standard locations
such as /usr/1ib/X11/app-defaults/Qmon, by including gmon specific
resource definitions into the standard .Xdefaults or .Xresources files or by
putting a site specific Qmon file to a location referenced by standard search paths
such as XAPPLRESDIR. Please ask your administrator if any of the above is relevant
in your case,

In addition, the user can configure personal preferences by either copying and
modifying the Qmon file into the home directory (or to another location pointed to
by the private XAPPLRESDIR search path) or by including the necessary resource
definitions into the user’s private .Xdefaults or .Xresources files. A private
Qmon resource file may also by installed via the xrdb command during operation or
at start-up of the X11 environment, e.g. in a .xinitrc resource file.

Please refer to the comment lines in the sample Qmon file for detailed information on
the possible customizations.

Chapter 3 User's Guide 237

Another means of customizing gmon has been explained for the job and queue
control customization dialogues shown in figure 3-18 on page 220 and in figure 3-29
on page 236. In both dialogues, the Save button can be used to store the filtering
and display definitions configured with the customization dialogues to the file
.gqmon_preferences in the user’s home directory. Upon being restarted, gmon
will read this file and reactivate the previously defined behavior.

238 Sun Grid Engine * July 2001

cHAPTER 4

Reference Manual

Introduction

This document contains the manual pages as included in the Sun Grid Engine
distribution.

Typographic Conventions

The following conventions are used in the Reference Manual

Sun Grid Engine as well as UNIX Commands which can be found in the following
manual pages typeset in emphasized font. Command-line in- and output is printed
in teletype font and newly introduced or defined terms are typeset in boldface
font.

239

SGE_INTRO(1)

NAME

Sun Grid Engine Introduction — a facility for executing UNIX jobs on remote machines

DESCRIPTION

Sun Grid Engine is a facility for executing UNIX batch jobs (shell scripts) on a pool of cooperating
workstations. Jobs are queued and executed remotely on workstations at times when those workstations would
otherwise be idle or only lightly loaded. The work load is distributed among the workstations in the cluster
corresponding to the load situation of each machine and the resource requirements of the jobs.

User level checkpointing programs are supported and a transparent checkpointing mechanism is provided (see
sge_ckpt(1)). Checkpointing jobs migrate from workstation to workstation without user intervention on load

demand. In addition to batch jobs, interactive jobs and parallel jobs can also be submitted to Sun Grid Engine.
Sun Grid Engine also provides a mechanism for passing job requests over to arbitrary other queuing systems
via the so called Queuing System Interface (QSI).

USER INTERFACE

The Sun Grid Engine user interface consists of several programs which are described separately.
qacct(1)
qacct extracts arbitrary accounting information from the cluster logfile.
qalter(1)
qalter changes the characteristics of already submitted jobs.
gconf(1)

gconf provides the user interface for configuring, modifying, deleting and querying queues and the cluster
configuration.

qdel(1)

qdel provides the means for a user/operator/manager to cancel jobs.
qhold(1)

ghold holds back submitted jobs from execution.
qhost(1)

ghost displays status information about Sun Grid Engine execution hosts.

240 Sun Grid Engine * July 2001

qlogin(1)
glogin initiates a telnet or similar login session with automatic selection of a low loaded and suitable host.
gmake(1)

gmake is a replacement for the standard Unix make facility. It extends make by its ability to distribute
independent make steps across a cluster of suitable machines.

gmod(1)
gmod allows the owner(s) of a queue to suspend and enable all queues associated with his machine (all

currently active processes in this queue are also signaled) or to suspend and enable jobs executing in the
owned queues.

gmon(1)
gmon provides a Motif command interface to all Sun Grid Engine functions. The status of all or a private
selection of the configured queues is displayed on-line by changing colors at corresponding queue icons.
qresub(1)
gresub creates new jobs by copying currently running or pending jobs.
qris(1)
grls releases holds from jobs previously assigned to them e.g. via ghold(1) (see above).
qrsh(1)
qrsh can be used for various purposes such as providing remote execution of interactive applications via
Sun Grid Engine comparable to the standard Unix facility rsh, to allow for the submission of batch jobs
which, upon execution, support terminal I/O (standard/error output and standard input) and terminal

control, to provide a batch job submission client which remains active until the job has finished or to allow
for the Sun Grid Engine-controlled remote execution of the tasks of parallel jobs.

gselect(1)

gselect prints a list of queue names corresponding to specified selection criteria. The output of gselect is
usually fed into other Sun Grid Engine commands to apply actions on a selected set of queues.

gsh(1)

gsh opens an interactive shell (in an xterm(1)) on a low loaded host. Any kind of interactive jobs can be run
in this shell.

gstat(1)

gstat provides a status listing of all jobs and queues associated with the cluster.
gsub(1)

gsub is the user interface for submitting a job to Sun Grid Engine.

Chapter 4 Reference Manual 241

qtesh(l)

gtesh is a fully compatible replacement for the widely known and used Unix C-Shell (csh) derivative fcsh.
It provides a command-shell with the extension of transparently distributing execution of designated
applications to suitable and lightly loaded hosts via Sun Grid Engine.

SEE ALSO

sge_ckpt(1), gacct(1), qalter(1), gconf(1), qdel(1), ghold(1), qhost(l), qlogin(1), gmake(1), gmod(1), gmon(1),
qresub(1), qrls(1), qrsh(1), gselect(1), gsh(1), qstat(1), qgsub(1), qtcsh(1), Sun Grid Engine Installation and
Administration Guide, Sun Grid Engine Quick Start Guide, Sun Grid Engine User’s Guide.

COPYRIGHT

Copyright 2001 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, CA 94303-4900 U.S.A. All rights reserved.

This product or document is distributed under licenses restricting its use, copying, distribution, and decompilation. No part of this
product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.
Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX s a registered
trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, AnswerBook2, docs.sun.com, and Solaris are trademarks, registered trademarks, or service
marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or
registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based
upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun
acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the
computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s
licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license agreements.

Federal Acquisitions: Commercial Software—Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION ISPROVIDED “ASIS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND
WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY
INVALID.

242 Sun Grid Engine * July 2001

SGE_CKPT(1)

NAME

Sun Grid Engine Checkpointing — the Sun Grid Engine checkpointing mechanism and checkpointing support

DESCRIPTION

Sun Grid Engine supports two levels of checkpointing: the user level and a operating system provided
transparent level. User level checkpointing refers to applications, which do their own checkpointing by
writing restart files at certain times or algorithmic steps and by properly processing these restart files when
restarted.

Transparent checkpointing has to be provided by the operating system and is usually integrated in the
operating system kernel. An example for a kernel integrated checkpointing facility is the CPR package for
SGI IRIX platforms.

Checkpointing jobs need to be identified to the Sun Grid Engine system by using the —ckpt option of the
gsub(1) command. The argument to this flag refers to a so called checkpointing environment, which defines
the attributes of the checkpointing method to be used (see checkpoint(5) for details). Checkpointing
environments are setup by the gconf{ 1) options —ackpt, —dckpt, —mckpt and —sckpt. The gsub(1) option —c can
be used to overwrite the when attribute for the referenced checkpointing environment.

If a queue is of the type CHECKPOINTING, jobs need to have the checkpointing attribute flagged (see the —
ckpt option to gsub(1)) to be permitted to run in such a queue. As opposed to the behavior for regular batch
jobs, checkpointing jobs are aborted under conditions, for which batch or interactive jobs are suspended or
even stay unaffected. These conditions are:

1 Explicit suspension of the queue or job via gmod(1) by the cluster administration or a queue owner if the x
occasion specifier (see gsub(1) —c and checkpoint(5)) was assigned to the job.

A load average value exceeding the migration threshold as configured for the corresponding queues (see
queue_conf(5)).

1 Shutdown of the Sun Grid Engine execution daemon cod_execd(8) being responsible for the checkpoint-
ing job.

After abortion, the jobs will migrate to other queues unless they were submitted to one specific queue by an

explicit user request. The migration of jobs leads to a dynamic load balancing.

Note — The abortion of checkpointed jobs will free all resources (memory, swap space) which the job
occupies at that time. This is opposed to the situation for suspended regular jobs, which still cover
swap space.

Chapter 4 Reference Manual 243

RESTRICTIONS

When a job migrates to a queue on another machine at present no files are transferred automatically to that
machine. This means that all files which are used throughout the entire job including restart files, executables
and scratch files must be visible or transferred explicitly (e.g. at the beginning of the job script).

There are also some practical limitations regarding use of disk space for transparently checkpointing jobs.
Checkpoints of a transparently checkpointed application are usually stored in a checkpoint file or directory by
the operating system. The file or directory contains all the text, data, and stack space for the process, along
with some additional control information. This means jobs which use a very large virtual address space will
generate very large checkpoint files. Also the workstations on which the jobs will actually execute may have
little free disk space. Thus it is not always possible to transfer a transparent checkpointing job to a machine,
even though that machine is idle. Since large virtual memory jobs must wait for a machine that is both idle,
and has a sufficient amount of free disk space, such jobs may suffer long turnaround times.

SEE ALSO

sge_intro(1), gconf(1), gmod(1), gsub(1), checkpoint(5), Sun Grid Engine Installation and Administration
Guide, Sun Grid Engine User’s Guide.

COPYRIGHT

See sge_intro(1) for a full statement of rights and permissions.

244 Sun Grid Engine * July 2001

QACCT(1)

NAME

qacct — report and account for Sun Grid Engine usage

SYNOPSIS

qacct [—A Account] [-b BeginTime] [—d Days]

[—e EndTime] [—-g [GroupldIGroupName]]

[-h [HostName]] [-help] [-history HistoryPath]
[< [JobldlJobName]] [-1 attr=val,...] [—nohist]
[—o [Owner]] [-pe [PEname]] [.q [Q_name]]
[—slots [SlotNumber]] [-t task_id_range_list]
[

—P [Project] | [-D [Department] | [—f AcctFileName |

DESCRIPTION

The gacct utility scans the accounting data file (see accounting(5)) and produces a summary of information
for wall-clock time, cpu-time, and system time for the categories of hostname, queue-name, group-name,
owner-name, job-name, job-ID and for the queues meeting the resource requirements as specified with the 1
switch. Combinations of each category are permitted. Alternatively, all or specific jobs can be listed with the
—j switch. For example the search criteria could include summarizing for a queue and an owner, but not for
two queues in the same request.

OPTIONS

—A Account
The account for jobs to be summarized.

-b BeginTime
The earliest start time for jobs to be summarized, in the format [[CC]Y Y]MMDDhhmm[.SS]. See also —d
option.

—d Days

The number of days to summarize and print accounting information on. If used together with the —b
BeginTime option (see above), jobs started within BeginTime to BeginTime + Days are counted. If used
together with the —e EndTime (see below) option, count starts at EndTime - Days.

Chapter 4 Reference Manual 245

—e EndTime

The latest start time for jobs to be summarized, in the format [[CC]YY]MMDDhhmm[.SS]. See also —d
option.

[-f AcctFileName]
The accounting file to be used. If omitted, the system default accounting file is processed.

—g [GroupldIGroupName]

The numeric system group id or the group alphanumeric name of the job owners to be included in the
accounting. If Groupld/GroupName is omitted, all groups are accounted.

-h [HostName]

The case-insensitive name of the host upon which accounting information is requested. If the name is
omitted, totals for each host are listed separately.

—help
Display help information for the gacct command.

—history HistoryPath

The directory path where the historical queue and complexes configuration data is located, which is used
for resource requirement matching in conjunction with the -1 switch. If the latter is not set, this option is
ignored.

—j [[JobNamelJobId]]
The name or ID of the job during execution for which accounting information is printed. If neither a name
nor an ID is given all jobs are enlisted.

This option changes the output format of gacct. If activated, CPU times are no longer accumulated but the
“raw” accounting information is printed in a formatted form instead. See accounting(5) for an explanation
of the displayed information.

-1 attr=val,...

A resource requirement specification which must be met by the queues in which the jobs being accounted
were executing. The matching is performed with historical data, i.e. it reflects the situation of the queue
and complexes configuration at the time of the job start.

The resource request is very similar to the one described in gsub(1). The main difference is that ever
changing load information may not be requested as it is not contained in the historical configuration data
being used.

—-nohist

Only useful together with the —1 option. It forces gacct not to use historical queue and complexes
configuration data for resource requirement matching but instead retrieve actual queue and complexes
configuration from cod_gmaster(8).

246 Sun Grid Engine * July 2001

Note — This may lead to confusing statistical results, as the current queue and complexes
configuration may differ significantly from the situation being valid for past jobs.

Note = All hosts being referenced in the accounting file have to be up and running in order to get
results.

—o [Owner]

The name of the owner of the jobs for which accounting statistics are assembled. If the optional Owner
argument is omitted, a listing of the accounting statistics of all job owners being present in the accounting
file is produced.

—pe [PEname]

The name of the parallel environment for which usage is summarized. If PEname is not given, accounting
data is listed for each parallel environment separately.

—q [Q_name]

The name of the queue for which usage is summarized. If Q_name is not given, accounting data is listed
for each queue separately.

—slots [SlotNumber]

The number of queue slots for which usage is summarized. If SlotNumber is not given, accounting data is
listed for each number of queue slots separately.

—t task_id_range_list
Only available together with the —j option described above.

The -t switch specifies the job array task range, for which accounting information should be printed.
Syntax and semantics of task_id_range_list are identical to that one described under the —t option to
gsub(1). Please see there also for further information on job arrays.

—P [Project]

The name of the project for which usage is summarized. If Project is not given, accounting data is listed
for each owner project separately. Projects are only used when running in Sun Grid Engine, Enterprise
Edition mode.

-D [Department]

The name of the department for which usage is summarized. If Department is not given, accounting data
is listed for each owner department separately. Departments are only used when running in Sun Grid
Engine, Enterprise Edition mode.

Chapter 4 Reference Manual 247

ENVIRONMENTAL VARIABLES

CODINE_ROOT

Specifies the location of the Sun Grid Engine standard configuration files. If not set a default of
/usr/CODINE is used.

COD_CELL

If set, specifies the default Sun Grid Engine cell. To address a Sun Grid Engine cell gacct uses (in the order
of precedence):

The name of the cell specified in the environment
variable COD_CELL, if it is set.
The name of the default cell, i.e. default.

COD_DEBUG_LEVEL

If set, specifies that debug information should be written to stderr. In addition the level of detail in which
debug information is generated is defined.

COMMD_PORT

If set, specifies the tcp port on which cod_commad(8) is expected to listen for communication requests.
Most installations will use a services map entry instead to define that port.

COMMD_HOST

If set, specifies the host on which the particular cod_commd(8) to be used for Sun Grid Engine
communication of the gacct client resides. Per default the local host is used.

FILES

<codine_root>/<cell>/common/accounting

Sun Grid Engine default accounting file
<codine_root>/<cell>/common/history

Sun Grid Engine default history database
<codine_root>/<cell>/common/act_gmaster

Sun Grid Engine master host file

SEE ALSO

sge_intro(1), qsub(1), accounting(5), cod_qmaster(8), cod_commd(8).

COPYRIGHT

See sge_intro(1) for a full statement of rights and permissions.

248 Sun Grid Engine * July 2001

QCONF(1)

NAME

gconf — Sun Grid Engine Queue Configuration

SYNTAX

gconf options

DESCRIPTION

Qconf allows the system administrator to add, delete, and modify the current Sun Grid Engine configuration,
including queue management, host management, complex management and user management. Qconf also
allows you to examine the current queue configuration for existing queues.

OPTIONS

Unless denoted otherwise, the following options and the corresponding operations are available to all users
with a valid account.

—Aattr obj_spec fname obj_instance,... <add to object attributes>

Similar to -aattr (see below) but takes specifications for the object attributes to be enhanced from file
named fname. As opposed to -aattr, multiple attributes can be enhanced. Their specification has to be
enlisted in fname following the file format of the corresponding object (see queue_conf(5) for the queue,
for example).

Requires root/manager privileges.
—Ac complex_name fname <add complex>

Add the complex complex_name defined in fname to the Sun Grid Engine cluster. The format of the
complex specification is described in complex(5). Requires root or manager privileges.

—Acal fname <add calendar>

Adds a new calendar definition to the Sun Grid Engine environment. Calendars are used in Sun Grid
Engine for defining availability and unavailability schedules of queues. The format of a calendar definition
is described in calendar_conf(5).

The calendar definition is taken from the file fname. Requires root/ manager privileges.

Chapter 4 Reference Manual 249

—Ackpt fname <add ckpt. environment>

Add the checkpointing environment as defined in fname (see checkpoint(5)) to the list of supported
checkpointing environments. Requires root or manager privileges.

—Aconf file_list <add configurations>

Add the cluster configurations (see codine_conf{5)) specified in the files enlisted in the comma separated
file_list.

Requires root or manager privileges.

—Ae fname <add execution host>

Add the execution host defined in fname to the Sun Grid Engine cluster. The format of the execution host
specification is described in host_conf(5). Requires root or manager privileges.

—Ap fname <add PE configuration>

Add the parallel environment (PE) defined in fname to the Sun Grid Engine cluster. Requires root or
manager privileges.

—Aprj fname <add new project>

This option is only supported in case of a Sun Grid Engine, Enterprise Edition system. It is not available
for Sun Grid Engine systems.

Adds the project description defined in fname to the list of registered projects (see project(5)). Requires
root or manager privileges.

—Aq fname <add new queue>

Add the queue defined in fname to the Sun Grid Engine cluster. Requires root or manager privileges.
—Au fname <add ACL>

Adds a user access list (ACL) to Sun Grid Engine. User lists are used for queue usage authentication.
Requires root/manager/operator privileges.

—Dattr obj_spec fname obj_instance,... <del. from object attribs>

Similar to -dattr (see below) but the definition of the list attributes from which entries are to be deleted is
contained in the file named fname. As opposed to -dattr, multiple attributes can be modified. Their
specification has to be enlisted in fname following the file format of the corresponding object (see
queue_conf(5) for the queue, for example).

Requires root/manager privileges.

—Mattr obj_spec fname obj_instance,... <mod. object attributes>

Similar to -mattr (see below) but takes specifications for the object attributes to be modified from file
named fname. As opposed to -mattr, multiple attributes can be modified. Their specification has to be
enlisted in fname following the file format of the corresponding object (see queue_conf{5) for the queue,
for example).

Requires root/manager privileges.

250 Sun Grid Engine * July 2001

—Mc complex_name fname <modify complex>

Overwrites the specified complex by the contents of fname. The argument file must comply to the format
specified in complex(5). Requires root or manager privilege.

—Mcal fname <modify calendar>

Overwrites the calendar definition as specified in fname. The argument file must comply to the format
described in calendar_conf{5). Requires root or manager privilege.

—Mckpt fname <modify ckpt. environment>

Overwrite an existing checkpointing environment with the definitions in fname (see checkpoint(5)). The
name attribute in fname has to match an existing checkpointing environment. Requires root or manager
privileges.

—Me fname <modify execution host>

Overwrites the execution host configuration for the specified host with the contents of fname, which must
comply to the format defines in host_conf(5). Requires root or manager privilege.

—Mp fname <modify PE configuration>

Same as —mp (see below) but instead of invoking an editor to modify the PE configuration the file fname
is considered to contain a changed configuration. Refer to sge_pe(5) for details on the PE configuration
format. Requires root or manager privilege.

—Mprj fname <modify project config.>
Same as —mprj (see below) but instead of invoking an editor to modify the project configuration the file

fname is considered to contain a changed configuration. Refer to project(5) for details on the project
configuration format. Requires root or manager privilege.

-Mq fname <modify queue configuration>

Same as —-mq (see below) but instead of invoking an editor to modify the queue configuration the file
fname is considered to contain a changed configuration. Refer to queue_conf{5) for details on the queue
configuration format. Requires root or manager privilege.

—Mgqattr fname q_name,... <modify queue attributes>
DEPRECATED: Use -Mattr!

Allows changing of selected queue configuration attributes in multiple queues with a single command. In
all queues contained in the comma separated queue name list the queue attribute definitions contained in
fname will be applied. Queue attributes not contained in fname will be left unchanged.

All queue attributes can be modified except for gname and ghostname. Refer to queue_conf(5) for details
on the queue configuration format. Requires root or manager privilege.

—Mu fname <modify ACL>

Takes the user access list (ACL) defined in fname to overwrite any existing ACL with the same name. See
access_list(5) for information on the ACL configuration format. Requires root or manager privilege.

Chapter 4 Reference Manual 251

—Rattr obj_spec fname obj_instance,... <replace object attribs>

Similar to -rattr (see below) but the definition of the list attributes whose content is to be replace is
contained in the file named fname. As opposed to -rattr, multiple attributes can be modified. Their
specification has to be enlisted in fname following the file format of the corresponding object (see
queue_conf(5) for the queue, for example).

Requires root/manager privileges.

—aattr obj_spec attr_name val obj_instance,...
<add to object attributes>

Allows adding specifications to a single configuration list attribute in multiple instances of an object with
a single command. Currently supported objects are the queue and the host configuration being specified as
queue or host in obj_spec. The queue load_thesholds parameter is an example of a list attribute. With the
-aattr option, entries can be added to such lists, while they can be deleted with -dattr, modified

with -mattr, and replaced with -rattr.

The name of the configuration attribute to be enhanced is specified with attr_name followed by val as a
name=value pair. The comma separated list of object instances (e.g., the list of queues) to which the
changes have to be applied are specified at the end of the command.

The following restriction applies: For the host object the load_values attribute cannot be modified (see
host_conf{(5)).

Requires root or manager privilege.

—ac complex_name <add complex>

Adds a complex to the Sun Grid Engine environment. Complex entries contain one or more resources
which may be requested by jobs submitted to the system. The complex(5) manual page contains detailed
information about the format of a complex definition.

When using the —ac option the complex name is given in the command option. Qconf will then open a
temporary file and start up the text editor indicated by the environment variable EDITOR (default editor is
vi(1) if EDITOR is not set). After entering the complex definition and closing the editor the new complex
is checked and registered with cod_gmaster(8). Requires root/manager privileges.

—acal calendar_name <add calendar>
Adds a new calendar definition to the Sun Grid Engine environment. Calendars are used in Sun Grid

Engine for defining availability and unavailability schedules of queues. The format of a calendar definition
is described in calendar_conf{(5).

With the calendar name given in the option argument gconf will open a temporary file and start up the text
editor indicated by the environment variable EDITOR (default editor is vi(I) if EDITOR is not set). After
entering the calendar definition and closing the editor the new calendar is checked and registered with
cod_gmaster(8). Requires root/manager privileges.

—ackpt ckpt_name <add ckpt. environment>

Adds a checkpointing environment under the name ckpt_name to the list of checkpointing environments
maintained by Sun Grid Engine and to be usable to submit checkpointing jobs (see checkpoint(5) for
details on the format of a checkpointing environment definition). Qconf retrieves a default checkpointing

252 Sun Grid Engine * July 2001

environment configuration and executes vi(1) (or SEDITOR if the EDITOR environment variable is set) to
allow you to customize the checkpointing environment configuration. Upon exit from the editor, the
checkpointing environment is registered with cod_gmaster(8). Requires root/manager privileges.

—aconf host,... <add configuration>

Successively adds cluster configurations (see sge_conf{5)) For the hosts in the comma separated file_list.
For each host, an editor (SEDITOR indicated or vi(1)) is invoked and the configuration for the host can be
entered. The configuration is registered with cod_gmaster(8) after saving the file and quitting the editor.

Requires root or manager privileges.

—ae [host_template] <add execution host>

Adds a host to the list of Sun Grid Engine execution hosts. If a queue is configured on a host this host is
automatically added to the Sun Grid Engine execution host list. Adding execution hosts explicitly offers
the advantage to be able to specify parameters like load scale values with the registration of the execution
host. However, these parameters can be modified (from their defaults) at any later time via the —me option
described below.

If the host_template argument is present, gconf retrieves the configuration of the specified execution host
from cod_gmaster(8) or a generic template otherwise. The template is then stored in a file and gconf
executes vi(1) (or the editor indicated by $SEDITOR if the EDITOR environment variable is set) to change
the entries in the file. The format of the execution host specification is described in host_conf{5). When the
changes are saved in the editor and the editor is quit the new execution host is registered with
cod_gmaster(8). Requires root/manager privileges.

—ah hostname,... <add administrative host>

Adds hosts hostname to the Sun Grid Engine trusted host list (a host must be in this list to execute
administrative Sun Grid Engine commands, the sole exception to this being the execution of gconf on the
cod_gmaster(8) node). The default Sun Grid Engine installation procedures usually add all designated
execution hosts (see the —ae option above) to the Sun Grid Engine trusted host list automatically. Requires
root or manager privileges.

—am user,... <add managers>

Adds the indicated users to the Sun Grid Engine manager list. Requires root or manager privileges.
—a0 user,... <add operators>

Adds the indicated users to the Sun Grid Engine operator list. Requires root/manager privileges.

—ap pe_name <add new PE>

Adds a Parallel Environment (PE) description under the name pe_name to the list of PEs maintained by
Sun Grid Engine and to be usable to submit parallel jobs (see sge_pe(5) for details on the format of a PE
definition). Qconf retrieves a default PE configuration and executes vi(/) (or SEDITOR if the EDITOR
environment variable is set) to allow you to customize the PE configuration. Upon exit from the editor, the
PE is registered with cod_gmaster(8). Requires root/manager privileges.

Chapter 4 Reference Manual 253

—aprj <add new project>

This option is only supported in case of a Sun Grid Engine, Enterprise Edition system. It is not available
for Sun Grid Engine systems.

Adds a project description to the list of registered projects (see project(5)). Qconf retrieves a template
project configuration and executes vi(1) (or EDITOR if the EDITOR environment variable is set) to allow
you to customize the new project. Upon exit from the editor, the template is registered with
cod_gmaster(8). Requires root or manager privileges.

-aq [q_template] <add new queue>

Qconf retrieves either the default queue configuration (see queue_conf{5)) or the configuration of the
queue q_template (if the optional argument is present) and executes vi(1) (or SEDITOR if the EDITOR
environment variable is set) to allow you to customize the queue configuration. Upon exit from the editor,
the queue is registered with cod_gmaster(8). A minimal configuration requires only that the queue name
and queue hostname be set. Requires root or manager privileges.

—as hostname,... <add submit hosts>
Add hosts hostname to the list of hosts allowed to submit Sun Grid Engine jobs and control their behavior
only. Requires root or manager privileges.

—astnode node_path=shares,... <add share tree node>
This option is only supported in case of a Sun Grid Engine, Enterprise Edition system. It is not available
for Sun Grid Engine systems.

Adds the specified share tree node(s) to the share tree (see share_tree(5)). The node_path is a hierarchical
path ([/Inode_name[[/.]node_name...]) specifying the location of the new node in the share tree. The base
name of the node_path is the name of the new node. The node is initialized to the number of specified
shares. Requires root or manager privileges.

—astree <add share tree>
This option is only supported in case of a Sun Grid Engine, Enterprise Edition system. It is not available
for Sun Grid Engine systems.

Adds the definition of a share tree to the system (see share_tree(5)). A template share tree is retrieved and
an editor (either vi(1) or the editor indicated by $EDITOR) is invoked for modifying the share tree
definition. Upon exiting the editor, the modified data is registered with cod_gmaster(8). Requires root or
manager privileges.

—au user,... acl_name,... <add users to ACLs>

Adds users to Sun Grid Engine user access lists (ACLs). User lists are used for queue usage authentication.
Requires root/manager/operator privileges.

254 Sun Grid Engine * July 2001

—auser <add user>

This option is only supported in case of a Sun Grid Engine, Enterprise Edition system. It is not available
for Sun Grid Engine systems.

Adds a user to the list of registered users (see user(5)). This command invokes an editor (either vi(/) or the
editor indicated by the EDITOR environment variable) for a template user. The new user is registered after
changing the entry and exiting the editor. Requires root or manager privileges.

—Cq queue_name,... <clean queue>

Cleans queue from jobs which haven’t been reaped. Primarily a development tool. Requires
root/manager/operator privileges.

—dattr obj_spec attr_name val obj_instance,...
<delete in object attributes>

Allows deleting specifications in a single configuration list attribute in multiple instances of an object with
a single command. Currently supported objects are the queue and the host configuration being specified as
queue or host in obj_spec. The queue load_thesholds parameter is an example of a list attribute. With the
-dattr option, entries can be deleted from such lists, while they can be added with -aattr, modified

with -mattr, and replaced with -rattr.

The name of the configuration attribute to be modified is specified with attr_name followed by val
defining the name of the attribute list entry to be deleted. The comma separated list of object instances
(e.g., the list of queues) to which the changes have to be applied are specified at the end of the command.

The following restriction applies: For the host object the load_values attribute cannot be modified (see
host_conf(5)).

Requires root or manager privilege.
—dc complex_name,... <delete complex>
Deletes complexes from Sun Grid Engine. Requires root/manager privileges.
—dcal calendar_name,... <delete calendar>
Deletes the specified calendar definition from Sun Grid Engine. Requires root/manager privileges.
—dckpt ckpt_name <delete ckpt. environment>
Deletes the specified checkpointing environment. Requires root/manager privileges.
—dconf host,... <delete configuration>

The configuration entry for the specified hosts is deleted from the configuration list. Requires root or
manager privilege.

—de host_name,... <delete execution host>

Deletes hosts from the Sun Grid Engine execution host list. Requires root/manager privileges.

—dh host_name,... <delete administrative host>

Deletes hosts from the Sun Grid Engine trusted host list. The host on which cod_gmaster(8) is currently
running cannot be removed from the list of administrative hosts. Requires root/manager privileges.

Chapter 4 Reference Manual 255

—dm user[,user,...] <delete managers>
Deletes managers from the manager list. Requires root/manager privileges.
—do user[,user,...] <delete operators>
Deletes operators from the operator list. Requires root/manager privileges.

—dp pe_name <delete parallel environment>

Deletes the specified parallel environment (PE). Requires root/manager privileges.

—dprj project,... <delete projects>

This option is only supported in case of a Sun Grid Engine, Enterprise Edition system. It is not available
for Sun Grid Engine systems.

Deletes the specified project(s). Requires root/manager privileges.

—dq queue_name,... <delete queue>

Removes the specified queue(s). Active jobs will be allowed to run to completion. Requires root/manager
privileges.

—ds host_name,... <delete submit host>
Deletes hosts from the Sun Grid Engine submit host list. Requires root/manager privileges.

—dstnode node_path,... <delete share tree node>

This option is only supported in case of a Sun Grid Engine, Enterprise Edition system. It is not available
for Sun Grid Engine systems.

Deletes the specified share tree node(s). The node_path is a hierarchical path
([/Inode_name[[/.Jnode_name...]) specifying the location of the node to be deleted in the share tree.
Requires root or manager privileges.

—dstree <delete share tree>

This option is only supported in case of a Sun Grid Engine, Enterprise Edition system. It is not available
for Sun Grid Engine systems.

Deletes the current share tree. Requires root or manager privileges.

—du user,... acl_name,... <delete users from ACL>

Deletes one or more users from one or more Sun Grid Engine user access lists (ACLs). Requires
root/manager/operator privileges.

—dul acl_name,... <delete user lists>
Deletes one or more user lists from the system. Requires root/manager/operator privileges.
—duser user,... <delete users>

This option is only supported in case of a Sun Grid Engine, Enterprise Edition system. It is not available
for Sun Grid Engine systems.

Deletes the specified user(s) from the list of registered users. Requires root or manager privileges.

256 Sun Grid Engine * July 2001

—help
Prints a listing of all options.
—k{mlsle[j] [host,...]} <shutdown Sun Grid Engine>

Used to shutdown Sun Grid Engine components (daemons). In the form —km cod_gmaster(8) is forced to
terminate in a controlled fashion. In the same way the —ks switch causes termination of cod_schedd(8).
Shutdown of all running cod_execd(8) processes currently registered is initiated by the —ke option. If —kej
is specified instead, all jobs running on the execution hosts are aborted prior to termination of the
corresponding cod_execd(8). The optional comma separated host list specifies the execution hosts to be
addressed by the —ke and —kej option.

Requires root or manager privileges.

—mattr obj_spec attr_name val obj_instance,...
<modify object attributes>

Allows changing a single configuration attribute in multiple instances of an object with a single command.
Currently supported objects are the queue and the host configuration being specified as gueue or host in
obj_spec.

Note = "-mattr queue attr_name val q_name, ..." is equivalent to "-mgqattr attr_name val
g_name,..." (see below). The latter is available for backward compatibility.

The name of the configuration attribute to be modified is specified with attr_name followed by the value
to which the attribute is going to be set. If the attribute is a list, such as the queue load_thresholds, val can
be a name=value pair, in which case only a corresponding entry in the list is changed. Refer to the -aattr,
-dattr and -rattr options for a description of further means to change specifically such list attributes.

The comma separated list of object instances (e.g., the list of queues) to which the changes have to be
applied are specified at the end of the command.

The following restrictions apply: For the queue object the qname and ghostname attributes cannot be
modified (see queue_conf(5)). For the host object the hostname, load_values and processors attributes
cannot be modified (see host_conf(5)).

Requires root or manager privilege.

—-mc complex_name <modify complex>

The specified complex configuration (see complex(5)) is retrieved, an editor is executed (either vi(/) or the
editor indicated by SEDITOR) and the changed complex configuration is registered with cod_gmaster(8)
upon exit of the editor. Requires root or manager privilege.

—mcal calendar_name <modify calendar>

The specified calendar definition (see calendar_conf{5)) is retrieved, an editor is executed (either vi(/) or
the editor indicated by $SEDITOR) and the changed calendar definition is registered with cod_gmaster(8)
upon exit of the editor. Requires root or manager privilege.

Chapter 4 Reference Manual 257

—mckpt ckpt_name <modify ckpt. environment>

Retrieves the current configuration for the specified checkpointing environment, executes an editor (either
vi(1) or the editor indicated by the EDITOR environment variable) and registers the new configuration
with the cod_gmaster(8). Refer to checkpoint(5) for details on the checkpointing environment
configuration format. Requires root or manager privilege.

—mconf [host,...Iglobal] <modify configuration>

The configuration for the specified host is retrieved, an editor is executed (either vi(1) or the editor
indicated by $EDITOR) and the changed configuration is registered with cod_gmaster(8) upon exit of the
editor. If the optional host argument is omitted or if the special host name “global” is specified, the cell
global configuration is modified. The format of the host configuration is described in codine_conf(5).
Requires root or manager privilege.

—me hostname <modify execution host>

Retrieves the current configuration for the specified execution host, executes an editor (either vi(1) or the
editor indicated by the EDITOR environment variable) and registers the changed configuration with
cod_gmaster(8) upon exit from the editor. The format of the execution host configuration is described in
host_conf(5). Requires root or manager privilege.

—-mp pe_name <modify PE configuration>

Retrieves the current configuration for the specified parallel environment (PE), executes an editor (either
vi(1) or the editor indicated by the EDITOR environment variable) and registers the new configuration
with the cod_gmaster(8). Refer to sge_pe(5) for details on the PE configuration format. Requires root or
manager privilege.

—mprj project <modify project>

This option is only supported in case of a Sun Grid Engine, Enterprise Edition system. It is not available
for Sun Grid Engine systems.

Data for the specific project is retrieved (see project(5)) and an editor (either vi(1) or the editor indicated
by $SEDITOR) is invoked for modifying the project definition. Upon exiting the editor, the modified data is
registered. Requires root or manager privileges.

—-mq queuename <modify queue configuration>

Retrieves the current configuration for the specified queue, executes an editor (either vi(1) or the editor
indicated by the EDITOR environment variable) and registers the new configuration with the
cod_gmaster(8). Refer to queue_conf(5) for details on the queue configuration format. Requires root or
manager privilege.

—mgqattr attr_name val q_name,... <modify queue attributes>
DEPRECATED: Use -mattr!

Allows changing of a single queue configuration attribute in multiple queues with a single command. In all
queues contained in the comma separated queue name list the value of the attribute attr_name will be
overwritten with val.

258 Sun Grid Engine * July 2001

All queue attributes can be modified except for gname and ghostname. Refer to queue_conf(5) for details
on the queue configuration format. Requires root or manager privilege.

—msconf <modify scheduler configuration>

The current scheduler configuration (see sched_conf{5)) is retrieved, an editor is executed (either vi(7) or
the editor indicated by $SEDITOR) and the changed configuration is registered with cod_gmaster(8) upon
exit of the editor. Requires root or manager privilege.

—mstnode node_path=shares,... <modify share tree node>

This option is only supported in case of a Sun Grid Engine, Enterprise Edition system. It is not available
for Sun Grid Engine systems.

Modifies the specified share tree node(s) in the share tree (see share_tree(5)). The node_path is a
hierarchical path ([/]node_name[[/.]node_name...]) specifying the location of an existing node in the
share tree. The node is set to the number of specified shares. Requires root or manager privileges.

—mstree <modify share tree>

This option is only supported in case of a Sun Grid Engine, Enterprise Edition system. It is not available
for Sun Grid Engine systems.

Modifies the definition of the share tree (see share_tree(5)). The present share tree is retrieved and an
editor (either vi(1) or the editor indicated by $EDITOR) is invoked for modifying the share tree definition.
Upon exiting the editor, the modified data is registered with cod_gmaster(8). Requires root or manager
privileges.

-mu acl_name <modify user access lists>

Retrieves the current configuration for the specified user access list, executes an editor (either vi(1) or the
editor indicated by the EDITOR environment variable) and registers the new configuration with the
cod_gmaster(8). Requires root or manager privilege.

—muser user <modify user>

This option is only supported in case of a Sun Grid Engine, Enterprise Edition system. It is not available
for Sun Grid Engine systems.

Data for the specific user is retrieved (see user(5)) and an editor (either vi(1) or the editor indicated by the
EDITOR environment variable) is invoked for modifying the user definition. Upon exiting the editor, the
modified data is registered. Requires root or manager privileges.

—rattr obj_spec attr_name val obj_instance,...
<replace object attributes>

Allows replacing a single configuration list attribute in multiple instances of an object with a single
command. Currently supported objects are the queue and the host configuration being specified as queue
or host in obj_spec. The queue load_thesholds parameter is an example of a list attribute. With the -rattr
option, such lists can be replaced, while entries can be added to them with -aattr, deleted with -dattr, and
modified with -mattr.

The name of the configuration attribute to be modified is specified with attr_name followed by val
defining the new setting of the attribute. The comma separated list of object instances (e.g., the list of

Chapter 4 Reference Manual 259

queues) to which the changes have to be applied are specified at the end of the command.

The following restriction applies: For the host object the load_values attribute cannot be modified (see
host_conf{(5)).

Requires root or manager privilege.

—sc complex_name,... <show complexes>
Display the configuration of one or more complexes.

—scal calendar_name <show calendar>
Display the configuration of the specified calendar.

—scall <show calendar list>
Show a list of all calendars currently defined.

—scl <show complex list names>
Show a list of all complexes currently configured.

—sckpt ckpt_name <show ckpt. environment>
Display the configuration of the specified checkpointing environment.

—sckptl <show ckpt. environment list>
Show a list of the names of all checkpointing environments currently configured.

—sconf [host,...Iglobal] <show configuration>

Print the cluster configuration being in effect globally or on specified host(s). If the optional comma
separated host list argument is omitted or the special string global is given, the global cell configuration is
displayed. For any other hostname in the list the merger of the global configuration and the host specific
configuration is displayed. The format of the host configuration is described in sge_conf{5).

—sconfl <show configuration list>

Display a list of hosts for which configurations are available. The special host name “global” refers to the
cell global configuration.

—se hostname <show execution host>

Displays the definition of the specified execution host.

—sel <show execution hosts>

Displays the Sun Grid Engine execution host list.

—sep <show licensed processors>

Displays a list of number of processors which are licensed per execution host and in total.

—sh <show administrative hosts>

Displays the Sun Grid Engine administrative host list.

260 Sun Grid Engine * July 2001

—sm <show managers>
Displays the managers list.
—s0 <show operators>
Displays the operator list.
—Sp pe_name <show PE configuration>
Show the definition of the parallel environment (PE) specified by the argument.
—spl <show PE-list>
Show a list of all currently defined parallel environments (PEs).
—sprj project <show project>
This option is only supported in case of a Sun Grid Engine, Enterprise Edition system. It is not available
for Sun Grid Engine systems.
Shows the definition of the specified project (see project(5)).
—sprjl <show project list>
This option is only supported in case of a Sun Grid Engine, Enterprise Edition system. It is not available
for Sun Grid Engine systems.

Shows the list of all currently defined projects.
—sq queue_name[,queue_name,...] <show queues>
Displays one or multiple queues.
—-sql <show queue list>
Show a list of all currently defined queues.
—ss <show submit hosts>
Displays the Sun Grid Engine submit host list.
—ssconf <show scheduler configuration>
Displays the current scheduler configuration in the format explained in sched_conf{5).
—sstnode node_path,... <show share tree node>

This option is only supported in case of a Sun Grid Engine, Enterprise Edition system. It is not available
for Sun Grid Engine systems.

Shows the name and shares of the specified share tree node(s) (see share_tree(5)). The node_path is a
hierarchical path ([/]node_name[[/.Jnode_name...]) specifying the location of a node in the share tree.

—sstree <show share tree>

This option is only supported in case of a Sun Grid Engine, Enterprise Edition system. It is not available
for Sun Grid Engine systems.

Shows the definition of the share tree (see share_tree(5)).

Chapter 4 Reference Manual 261

—sss <show scheduler status>

Currently displays the host on which the Sun Grid Engine scheduler is active or an error message if no
scheduler is running.

—su acl_name <show user ACL>
Displays a Sun Grid Engine user access list (ACL).
—sul <show user lists>
Displays a list of names of all currently defined Sun Grid Engine user access lists (ACLs).

—suser user,... <show user>

This option is only supported in case of a Sun Grid Engine, Enterprise Edition system. It is not available
for Sun Grid Engine systems.

Shows the definition of the specified user(s) (see user(5)).

—suserl <show users>

This option is only supported in case of a Sun Grid Engine, Enterprise Edition system. It is not available
for Sun Grid Engine systems.

Shows the list of all currently defined users.

—tsm <trigger scheduler monitoring>

The Sun Grid Engine scheduler cod_schedd(8) is forced by this option to print trace messages of its next
scheduling run to the file <codine_root>/<cell>/common/schedd_runlog. The messages indicate the
reasons for jobs and queues not being selected in that run. Requires root or manager privileges.

Note — The reasons for job requirements being invalid with respect to resource availability of
queues are displayed using the format as described for the gstat(1) —F option (see description
of Full Format in section OUTPUT FORMATS of the gstat(1) manual page.

ENVIRONMENTAL VARIABLES

CODINE_ROOT

Specifies the location of the Sun Grid Engine standard configuration files. If not set a default of
/usr/CODINE is used.

COD_CELL

If set, specifies the default Sun Grid Engine cell. To address a Sun Grid Engine cell gconf uses (in the
order of precedence):

The name of the cell specified in the environment

variable COD_CELL, if it is set.
The name of the default cell, i.e. default.

262 Sun Grid Engine * July 2001

COD_DEBUG_LEVEL

If set, specifies that debug information should be written to stderr. In addition the level of detail in which
debug information is generated is defined.

COMMD_PORT

If set, specifies the tcp port on which cod_commad(8) is expected to listen for communication requests.
Most installations will use a services map entry instead to define that port.

COMMD_HOST

If set, specifies the host on which the particular cod_commd(8) to be used for Sun Grid Engine
communication of the gconf client resides. Per default the local host is used.

RESTRICTIONS

Modifications to a queue configuration do not affect an active queue, taking effect on next invocation of the
queue (i.e., the next job).

FILES

<codine_root>/<cell>/common/act_gmaster
Sun Grid Engine master host file

SEE ALSO

sge_intro(1), gstat(1), checkpoint(5), complex(5), sge_conf(5), host_conf(5), sge_pe(5), queue_conf(5),
cod_execd(8), cod_gmaster(8), cod_schedd(§).

COPYRIGHT

See sge_intro(1) for a full statement of rights and permissions.

Chapter 4 Reference Manual 263

QDEL(1)

NAME

qdel — delete Sun Grid Engine jobs from queues

SYNTAX

qdel [£] [-help] [—verify] [job/task_id_list]
qdel [—f] [-help] [—verify] -u user_list | -uall

DESCRIPTION

Qdel provides a means for a user/operator/manager to delete one or more jobs. Qdel deletes jobs in the order
in which their job identifiers are presented.

OPTIONS

—f

Force action for running jobs. The job(s) are deleted from the list of jobs registered at cod_gmaster(8)
even if the cod_execd(8) controlling the job(s) does not respond to the delete request sent by
cod_gmaster(8).

Users which are neither Sun Grid Engine managers nor operators can only use the -f option (for their own
jobs) if the cluster configuration entry qmaster_params contains the flag ENABLE_FORCED_QDEL
(see sge_conf(5)). However, behavior for administrative and non-administrative users differs. Jobs are
deleted from the Sun Grid Engine database immediately in case of administrators. Otherwise, a regular
deletion is attempted first and a forced cancellation is only executed if the regular deletion was
unsuccessful.

—help
Prints a listing of all options.
—u username,... | -uall

Deletes only those jobs which were submitted by users specified in the list of usernames. For managers it
is possible to use the qdel -uall command to delete all jobs of all users.

If you use the —u or —uall switch it is be permitted to specify a additional job/task_id_list.

264 Sun Grid Engine * July 2001

—verify

performs no modifications but just prints what would be done if —verify was not present.
job/task_id_list

Specified by the following form:

job_id[.task_range][,job_id[.task_range],...]

If present, the task_range restricts the effect of the gdel operation to the job array task range specified as
suffix to the job id (see the —t option to gsub(1) for further details on job arrays).

The task range specifier has the form n[-m[:s]]. The range may be a single number, a simple range of the
form n-m or a range with a step size.

Instead of job/task_id_list it is possible to use the keyword ’all’ to modify all jobs of the current user.

ENVIRONMENTAL VARIABLES

CODINE_ROOT

Specifies the location of the Sun Grid Engine standard configuration files. If not set a default of
/usr/CODINE is used.

COD_CELL

If set, specifies the default Sun Grid Engine cell. To address a Sun Grid Engine cell gdel uses (in the order
of precedence):

The name of the cell specified in the environment
variable COD_CELL, if it is set.
The name of the default cell, i.e. default.
COD_DEBUG_LEVEL

If set, specifies that debug information should be written to stderr. In addition the level of detail in which
debug information is generated is defined.

COMMD_PORT

If set, specifies the tcp port on which cod_commad(8) is expected to listen for communication requests.
Most installations will use a services map entry instead to define that port.

COMMD_HOST

If set, specifies the host on which the particular cod_commd(8) to be used for Sun Grid Engine
communication of the gdel client resides. Per default the local host is used.

Chapter 4 Reference Manual 265

FILES

<cod_root>/<cell>/common/act_qgmaster
Sun Grid Engine master host file

SEE ALSO

sge_intro(1), gstat(1), gsub(1), cod_qmaster(8), cod_execd(8).

COPYRIGHT

See sge_intro(1) for a full statement of rights and permissions.

266 Sun Grid Engine * July 2001

QHOLD(1)

NAME

ghold - hold back Sun Grid Engine jobs from execution

SYNTAX

ghold [-h {ulols},...] [-help] [job/task_id_list]
ghold [-h {ulols},...] [-help] -u user_list | -uall

DESCRIPTION

Qhold provides a means for a user/operator/manager to place so called holds on one or more jobs pending to
be scheduled for execution. As long as any type of hold is assigned to a job, the job is not eligible for
scheduling.

Holds can be removed with the grils(1) or the galter(1) command.
There are three different types of holds:
user
User holds can be assigned and removed by managers, operators and the owner of the jobs.
operator
Operator holds can be assigned and removed by managers and operators.
system
System holds can be assigned and removed by managers only.
If no hold type is specified with the —h option (see below) the user hold is assumed by default.

An alternate way to assign holds to jobs is the gsub(1) or the galter(1) command (see the —h option).

OPTIONS

-h {ulols},...
Assign a u(ser), o(perator) or s(system) hold or a combination thereof to one or more jobs.
—help

Prints a listing of all options.

Chapter 4 Reference Manual 267

—u username,... | -uall

Changes are only made on those jobs which were submitted by users specified in the list of usernames. For
managers it is possible to use the qhold -uall command to set a hold for all jobs of all users.

If you use the —u or —uall switch it is be permitted to specify a additional job/task_id_list.
job/task_id_list

Specified by the following form:

job_id[.task_range][,job_id[.task_range],...]

If present, the task_range restricts the effect of the ghold operation to the job array task range specified as
suffix to the job id (see the —t option to gsub(1) for further details on job arrays).

The task range specifier has the form n[-m[:s]]. The range may be a single number, a simple range of the
form n-m or a range with a step size.

Instead of job/task_id_list it is possible to use the keyword ’all’ to modify the hold state for all jobs of the
current user.

ENVIRONMENTAL VARIABLES

CODINE_ROOT

Specifies the location of the Sun Grid Engine standard configuration files. If not set a default of
/usr/CODINE is used.

COD_CELL

If set, specifies the default Sun Grid Engine cell. To address a Sun Grid Engine cell ghold uses (in the
order of precedence):

The name of the cell specified in the environment
variable COD_CELL, if it is set.
The name of the default cell, i.e. default.
COD_DEBUG_LEVEL

If set, specifies that debug information should be written to stderr. In addition the level of detail in which
debug information is generated is defined.

COMMD_PORT

If set, specifies the tcp port on which cod_commd(8) is expected to listen for communication requests.
Most installations will use a services map entry instead to define that port.

COMMD_HOST

If set, specifies the host on which the particular cod_commd(8) to be used for Sun Grid Engine
communication of the ghold client resides. Per default the local host is used.

268 Sun Grid Engine * July 2001

SEE ALSO

sge_intro(1), qalter(1), qris(1), gsub(1).

COPYRIGHT

See sge_intro(1) for a full statement of rights and permissions.

Chapter 4 Reference Manual 269

QHOST(1)

NAME

ghost — show the status of Sun Grid Engine hosts, queues, jobs

SYNTAX

ghost [-F [resource_name,...] [-help] [-h host_list]
[-j 1[-1resource=val,...][-u user,...]

DESCRIPTION

ghost shows the current status of the available Sun Grid Engine hosts, queues and the jobs associated with the
queues. Selection options allow you to get information about specific hosts, queues, jobs or users. Without
any option ghost will display a list of all hosts without queue or job information.

OPTIONS

—F [resource_name,... |

ghost will present a detailed listing of the current resource availability per host with respect to all resources
(if the option argument is omitted) or with respect to those resources contained in the resource_name list.
Please refer to the description of the Full Format in section OUTPUT FORMATS below for further
detail.

—help
Prints a listing of all options.
-h host_list
Prints a list of all hosts contained in host_list.
-
Prints all jobs running on the queues hosted by the shown hosts. This switch calls —q implicitly.
-1 resource[=value]....

Defines the resources required by the hosts on which information is requested. Matching is performed on
hosts.

270 Sun Grid Engine * July 2001

_q
Show information about the queues hosted by the displayed hosts.

—u user,...

Display information only on those jobs and queues being associated with the users from the given user list.

OUTPUT FORMATS

Depending on the presence or absence of the —q or —F and —j option three output formats need to be
differentiated. PP

Default Format (without —q, =F and —j)

Following the header line a line is printed for each host consisting of

the Hostname

the Architecture.

the Number of processors.
the Load.

the Total Memory.

the Used Memory.

the Total Swapspace.

the Used Swapspace.

If the —q option is supplied, each host status line also contains extra lines for
every queue hosted by the host consisting of,

= the queue name.

= the queue type — one of B(atch), I(nteractive), C(heckpointing), P(arallel),
T(ransfer) or combinations thereof,

= the number of used and available job slots,

= the state of the queue - one of u(nknown) if the corresponding cod_execd(8)
cannot be contacted, a(larm), A(larm), C(alendar suspended), s(uspended),
S(ubordinate), d(isabled), D(isabled), E(rror) or combinations thereof.

If the state is a(alarm) at least one of the load thresholds defined in the
load_thresholds list of the queue configuration (see queue_conf(5)) is currently
exceeded, which prevents from scheduling further jobs to that queue.

As opposed to this, the state A(larm) indicates that at least one of the suspend
thresholds of the queue (see queue_conf(5)) is currently exceeded. This will result
in jobs running in that queue being successively suspended until no threshold is
violated.

The states s(uspended) and d(isabled) can be assigned to queues and released via
the gmod(1) command. Suspending a queue will cause all jobs executing in that
queue to be suspended.

Chapter 4 Reference Manual 271

272

The states D(isabled) and C(alendar suspended) indicate that the queue has been
disabled or suspended automatically via the calendar facility of Sun Grid Engine
(see calendar_conf(5)), while the S(ubordinate) state indicates, that the queue has
been suspend via subordination to another queue (see queue_conf(5) for details).
When suspending a queue (regardless of the cause) all jobs executing in that
queue are suspended too.

If an E(rror) state is displayed for a queue, cod_execd(8) on that host was unable to
locate the cod_shepherd(8) executable on that host in order to start a job. Please
check the error logfile of that cod_execd(8) for leads on how to resolve the problem.
Please enable the queue afterwards via the -c option of the gmod(1) command
manually.

If the -F option was used, resource availability information is printed following
the host status line. For each resource (as selected in an option argument to —F or
for all resources if the option argument was omitted) a single line is displayed
with the following format:

= a one letter specifier indicating whether the current resource availability value
was dominated by either

= ‘g’ - a cluster global,

= ‘h’ - ahost total or

= a second one letter specifier indicating the source for the current resource
availability value, being one of

= 1" - aload value reported for the resource,

» ‘L’ - aload value for the resource after administrator defined load scaling has
been applied,

= ‘c’ - availability derived from the consumable resources facility (see
complexes(5)), ‘v’ - a default complexes configuration value never overwritten
by a load report or a consumable update or

» ‘f’ - a fixed availability definition derived from a non-consumable complex
attribute or a fixed resource limit.

= after a colon the name of the resource on which information is displayed.

» after an equal sign the current resource availability value.

The displayed availability values and the sources from which they derive are
always the minimum values of all possible combinations. Hence, for example, a
line of the form “qf:h_vmem=4G”" indicates that a queue currently has a
maximum availability in virtual memory of 4 Gigabyte, where this value is a fixed
value (e.g. a resource limit in the queue configuration) and it is queue dominated,
i.e. the host in total may have more virtual memory available than this, but the
queue doesn’t allow for more. Contrarily a line “hl:h_vmem=4G” would also
indicate an upper bound of 4 Gigabyte virtual memory availability, but the limit
would be derived from a load value currently reported for the host. So while the
queue might allow for jobs with higher virtual memory requirements, the host on
which this particular queue resides currently only has 4 Gigabyte available.

Sun Grid Engine ¢ July 2001

After the queue status line (in case of —j) a single line is printed for each job
running currently in this queue. Each job status line contains

the job ID,

the job name,

the job owner name,

the status of the job — one of t(ransfering), r(unning), R(estarted), s(uspended),

S(uspended) or T(hreshold) (see the Reduced Format section for detailed

information),

» the start date and time and the function of the job (MASTER or SLAVE - only
meaningful in case of a parallel job) and

» the priority of the jobs.

ENVIRONMENTAL VARIABLES

CODINE_ROOT

Specifies the location of the Sun Grid Engine standard configuration files. If not set a default of
/usr/CODINE is used.

COD_CELL

If set, specifies the default Sun Grid Engine cell. To address a Sun Grid Engine cell gstat uses (in the order
of precedence):

The name of the cell specified in the environment
variable COD_CELL, if it is set.
The name of the default cell, i.e. default.
COD_DEBUG_LEVEL

If set, specifies that debug information should be written to stderr. In addition the level of detail in which
debug information is generated is defined.

COMMD_PORT

If set, specifies the tcp port on which cod_commd(8) is expected to listen for communication requests.
Most installations will use a services map entry instead to define that port.

COMMD_HOST

If set, specifies the host on which the particular cod_commd(8) to be used for Sun Grid Engine
communication of the gszat client resides. Per default the local host is used.

Chapter 4 Reference Manual 273

FILES

<codine_root>/<cell>/common/act_gmaster
Sun Grid Engine master host file

SEE ALSO

sge_intro(1), galter(1), gconf(1), qghold(1), gmod(1), gstat(1), gsub(1), queue_conf(5), cod_commd(8),
cod_execd(8), cod_gmaster(8), cod_qstd(8), cod_shepherd(§).

COPYRIGHT

See sge_intro(1) for a full statement of rights and permissions.

274 Sun Grid Engine * July 2001

QMAKE(1)

NAME

gmake — distributed parallel make, scheduling by Sun Grid Engine.

SYNTAX

gmake [options] -- [gmake options]

DESCRIPTION

QOmake is a parallel, distributed make(1) utility. Scheduling of the parallel make tasks is done by Sun Grid
Engine. It is based on gmake (GNU make), version 3.78.1. Both Sun Grid Engine and gmake commandline
options can be specified. They are separated by "--".

All Sun Grid Engine options valid with gsub(1) or grsh(1) can be specified with gmake - see submit(1) for a
description of all Sun Grid Engine commandline options. The make(1) manual page describes the gmake
commandline syntax.

The syntax of gmake makefiles corresponds to gmake and is described in the "GNU Make Manual".

EXAMPLES

gmake -pe compiling 1-10 -

will request between 1 and 10 slots in parallel environment "compiling" on the same architecture as the submit
host. The make tasks will inherit the complete environment of the calling shell. It will execute as many
parallel tasks as slots have been granted by Sun Grid Engine.

gmake -- -j 4

will request between 1 and 4 slots in parallel environment "make" on the same architecture as the submit host.

Chapter 4 Reference Manual 275

gmake -l arch=solaris -pe make 3

will request 3 parallel make tasks to be executed on hosts of architecture "solaris". The submit may be done on
a host of any architecture.

The shell script:

#l/bin/sh
gmake -inherit --

can be submitted by:

gsub -pe make 1-10 [further_codine_options] <script>

QOmake will inherit the resources granted for the job sumbitted above under parallel environment "make".

ENVIRONMENTAL VARIABLES

CODINE_ROOT

Specifies the location of the Sun Grid Engine standard configuration files. If not set a default of
/usr/CODINE is used.

COD_CELL

If set, specifies the default Sun Grid Engine cell. To address a Sun Grid Engine cell gmake uses (in the
order of precedence):

The name of the cell specified in the environment
variable COD_CELL, if it is set.
The name of the default cell, i.e. default.
COD_DEBUG_LEVEL

If set, specifies that debug information should be written to stderr. In addition the level of detail in which
debug information is generated is defined.

COMMD_PORT

If set, specifies the tcp port on which cod_commad(8) is expected to listen for communication requests.
Most installations will use a services map entry instead to define that port.

276 Sun Grid Engine * July 2001

COMMD_HOST

If set, specifies the host on which the particular cod_commd(8) to be used for Sun Grid Engine
communication of the gmake client resides. Per default the local host is used.

KNOWN PROBLEMS

Slow NFS server

Very low file server performance may lead to problems on depending files.

Example: Host a compiles a.c to a.0, host b compiles b.c to b.o, host ¢ shall link
program c from a.o and b.o. In case of very bad NFS performance, host ¢ might
not yet see files a.o and b.o.

Multiple commands in one rule

If multiple commands are executed in one rule, the makefile has to ensure that
they are handled as one commandline.

Example:

libx.a:
cd x
arru libx.a x.o

Building libx.a will fail, if the commands are executed in parallel (and possibly on
different hosts). Write the following instead:

libx.a:
cd x ; ar ru libx.a x.o

or

libx.a:
cdx;\
ar ru libx.a x.o

Chapter 4 Reference Manual 277

SEE ALSO

submit(1) as well as make(1) (GNU make manpage) and The GNU Make Manual in
<cod_root>/3rd_party/qmake.

COPYRIGHT

QOmake contains portions of Gnu Make (gmake), which is the copyright of the Free Software Foundation, Inc.,
Boston, MA, and is protected by the Gnu General Public License.

See sge_intro(1) and the information provided in <cod_root>/3rd_party/qmake for a statement of further
rights and permissions.

278 Sun Grid Engine * July 2001

QMOD(1)

NAME

gmod — modify a Sun Grid Engine queue

SYNTAX

qmod [options] [job/task_id_list | queue_list]

DESCRIPTION

Omod enables users classified as owners (see queue_conf{5) for details) of a workstation to modify the state
of Sun Grid Engine queues for his/her machine as well as the state of his/her own jobs. A manager/operator or
root can execute gmod for any queue and job in a cluster.

OPTIONS

Clears the error state of the specified queue(s).
-d

Disables the queue(s), i.e. no further jobs are dispatched to disabled queues while jobs already executing
in these queues are allowed to finish.
(Is the successor of the Sun Grid Engine (CODINE) version 3 -soc option.)

_e

Enables the queue(s).
(Is the successor of the Sun Grid Engine (CODINE) version 3 -xsoc option.)

—f
Force the modification action for the queue despite the apparent current state of the queue. For example if
a queue appears to be suspended but the job execution seems to be continuing the manager/operator can
force a suspend operation which will send a SIGSTOP to the jobs. In any case, the queue or job status will

be set even if the cod_execd(8) controlling the queues/jobs cannot be reached. Requires manager/operator
privileges.

Chapter 4 Reference Manual 279

—help

Prints a listing of all options.

If applied to queues, suspends the queues and any jobs which might be active. If applied to running jobs,
suspends the jobs. If a job is both suspended explicitly and via suspension of its queue, a following
unsuspend of the queue will not release the suspension state on the job.

-us

If applied to queues, unsuspends the queues and any jobs which might be active. If applied to jobs,
unsuspends the jobs. If a job is both suspended explicitly and via suspension of its queue, a following
unsuspend of the queue will not release the suspension state on the job.

—verify
performs no modifications but just prints what would be done if —verify was not present.
job/task_id_list | queue_list

The jobs or queues upon which gmod is supposed to operate. The job/task_id_list is specified by one of
the following forms:

job_id[.task_range][,job_id[.task_range],...]

job_id[.task_range][job_id[.task_range] ...]

If present, the task_range restricts the effect of the gmod operation to the job array task range specified as
suffix to the job id (see the —t option to gsub(1) for further details on job arrays).

The task range specifier has the form n[-m[:s]][,n[-m[:s]], ...] or n[-m[:s]][n[-m[:s]] ...] and thus consists
of a comma or blank separated list of range specifiers n[-m[:s]]. The ranges are concatenated to the
complete task id range. Each range may be a single number, a simple range of the form n-m or a range
with a step size.

ENVIRONMENTAL VARIABLES

CODINE_ROOT

Specifies the location of the Sun Grid Engine standard configuration files. If not set a default of
/usr/CODINE is used.

COD_CELL

If set, specifies the default Sun Grid Engine cell. To address a Sun Grid Engine cell gmod uses (in the
order of precedence):

The name of the cell specified in the environment

variable COD_CELL, if it is set.
The name of the default cell, i.e. default.

280 Sun Grid Engine * July 2001

COD_DEBUG_LEVEL

If set, specifies that debug information should be written to stderr. In addition the level of detail in which
debug information is generated is defined.

COMMD_PORT

If set, specifies the tcp port on which cod_commad(8) is expected to listen for communication requests.
Most installations will use a services map entry instead to define that port.

COMMD_HOST

If set, specifies the host on which the particular cod_commd(8) to be used for Sun Grid Engine
communication of the gmod client resides. Per default the local host is used.

FILES

<cod_root>/<cell>/common/act_qgmaster
Sun Grid Engine master host file

SEE ALSO

sge_intro(1), sge_ckpt(1), gstat(1), queue_conf(5), cod_execd(8).

COPYRIGHT

See sge_intro(1) for a full statement of rights and permissions.

Chapter 4 Reference Manual 281

QMON(1)

NAME

gmon — X-Windows OSF/Motif graphical user’s interface for Sun Grid Engine

SYNTAX

gmon [options]

DESCRIPTION

QOmon allows administrators and users to manipulate the Sun Grid Engine system from an X-Window
environment. Qmon provides various dialogues linked together in multiple ways. For each task the user
wishes to accomplish via gmon a corresponding dialogue is provided. There are multiple ways to address the
proper dialogue for a certain task:

1 The gmon main window that comes up first on start-up contains icon buttons for all major administrative
and user tasks. A functionality tooltip is displayed when pointing at the different icons.

1 A Task pulldown menu button appears in the gmon main window menu bar. Clicking on it opens a list of
available tasks. Selecting one of them opens the corresponding dialogue.

[The Task pulldown menu also contains the key accelerators which can be used to invoke the task dia-
logues directly from the main window by pressing a certain button sequence on the keyboard.

d While navigating through a certain dialogue and its dialogue subhierarchy, links to other dialogues occur
whenever a connection between both dialogues is obvious. Pushing the buttons that identify the links
opens up the other dialogues.

OPTIONS

The supported options are the standard X Toolkit options as described in X(/) section Options. Furthermore,
gmon supports:

—cmap

Installs a private color map for gmon. This is sometimes useful if other applications have already allocated
lots of colors and if gmon, therefore, prints corresponding error messages.

Note — Using a private color map, however, will result in color map switches whenever you enter
or leave gmon windows.

282 Sun Grid Engine * July 2001

—fontFamily {bigimediumlsmall}

Notifies gmon to use different sized font families for different resolution sizes.
—help

Displays usage information.
—-nologo

Startup without logo.

DIALOGUES

Job Control

The Job Control dialogue provides a folder of tabulated lists of the still pending
jobs, already running jobs and recently finished jobs. The dialogue allows for
detailed information on the jobs as well as for the deletion and suspension of jobs
being selected. In addition the job control dialogue offers links to the Submit
dialogue in order to submit new jobs or to change attributes of pending jobs
(Qalter button). The shown displayed fields in the tabular display and the jobs
displayed can be customized by pressing the Customize button. This
customization can be saved to the ~/.qmon_preferences file and is used on following
startups for the initial configuration of the Job Control dialogue.

Queue Control

The Queue Control dialogue with its sub-dialogue hierarchy enables the user to
control the status of the Sun Grid Engine queues being actually configured in the
system and allows the administrator to add new queues or to modify or delete
already existing ones. Each icon button in the top level Queue Control dialogue
window represents a configured Sun Grid Engine queue. The icon symbols, the
coloring and the text on the buttons informs about the architecture, the status and
some basic attributes of the queues. The top level dialogue also allows for
deleting those queues previously selected. Queues are selected by clicking with
the left mouse button on the icons or into a rectangular area surrounding the
buttons.

By pushing the Add or Modify button or using a pop-up menu that is raised
when clicking the right mouse button in the icon window of the top level Queue
Control dialogue, a sub-dialogue for configuring Sun Grid Engine queues is
opened. A queue needs to be selected to use the modify operation. The
configuration sub-dialogue allows for definition of the queue and host name or
displays the corresponding names in case of a modification. The queue
configuration parameters (see queue_conf(5)) are subdivided in different categories
(General Configuration, Execution Methods, Checkpointing, Load Suspend
Thresholds, Limits, Complexes, User Access, Project Access (only for Sun Grid

Chapter 4 Reference Manual 283

Engine, Enterprise Edition), Subordinate Queues, Owners) which are selectable
by the tab widget area presented in the lower region of the queue configuration
sub-dialogue. The administrator may select default values from already
configured queues (Clone button). By pushing the Ok button, the definitions are
registered with cod_gmaster(8). The Queue Control dialogue can be customized in
a similar way as the Job Control dialogue. The settings applied here are also
saved in ~/.qmon_preferences.

Submit

The Job Submission dialogue serves for submitting batch and interactive jobs
and is also invoked when changing attributes of pending jobs from the Job
Control dialogue explained above (Qalter button). To toggle between batch and
interactive jobs please use the Batch Interactive button at the top of the button
column on the right side of the Job Submission screen.

The dialogue consists of a folder containing two job preparation dialogue
pages.The most frequently used parameters in the course of a job submission are
offered on the General page. A job script has to be defined, all other fields are
optional. If the job demands for specification of advanced requirements, the
Advanced tab can be used to switch to an enhanced parameter display.

If resource requirements are mandatory for the job, the Request Resources icon
button has to be used to pop up the Requested Resources sub-dialogue. This sub-
dialogue allows for selection of the required resources of the job and for definition
of the quantities in which this resources are to be provided. The Available
Resources are constituted by those complex attributes being declared requestable
(see complex(5) for details). Resource requirements can be made Hard, i.e. they
must be met before a job can be started in a queue, or Soft, i.e. they are granted
on an as available basis.

Closing the Requested Resources sub-dialogue with the done button books the
specified requirement for the job. Pushing the Submit button on the top level
Submit dialogue submits the job.

Complex Config

The Complex Config allows the administrator to add new complexes or to
modify or delete existing ones (see complex(5)). The dialogue offers a selection list
for the existing complexes and displays the configuration of the one being
selected. By pushing the Delete button, the selected complex is deleted from the
configuration. Pushing the Add Modify button will open a complex configuration
dialogue, which allows to create new complexes or which provides the means to
change the existing ones. If a new complex is to be created, a name must be
defined for it. The name of the complex to be modified is displayed in the same
text input filed in case of a modify operation. The complex configuration dialogue
provides a tabulated list of the complex entries and an input region for the

284 Sun Grid Engine * July 2001

declaration of new or modified entries. The Add button updates the tabulated list
with the new or changed entry and the Ok button registers the additional or
modified complex with cod_gmaster(8).

Host Config

Three types of host lists can be maintained via the Host Config dialogue:
Administration Hosts

Submit Hosts

Execution Hosts

The host list to be manipulated is selected via clicking at one of the tabs named
correspondingly. The first two host lists only provide for adding or deleting
entries, thereby allowing administrative or submit permission for the hosts on the
lists, or denying it otherwise respectively. The execution host list entries in
addition provide the ability to define scaling factors for the load sensors,
consumable complex attributes and access attributes (access, xaccess and projects,
xprojects for Sun Grid Engine, Enterprise Edition mode only) as described in
complex(5). In a Sun Grid Engine, Enterprise Edition system CPU, memory and
I/0O usage reported for running jobs can be scaled in addition and the relative
performance of a host can be define with the Resource Capability Factor (see
host_conf(5)).

Cluster Config

This dialogue maintains the cluster global configuration as well as host specific
derivatives (see sge_conf(5)). When opened, the dialogue displays a selection list
for all hosts which have a configuration assigned. The special name “global”
refers to the cluster global configuration. By pushing the Add Modify button a
sub-dialogue is opened, which allows for modification of the cluster
configuration. For host specific configurations the ‘global” host specific
configuration fields are set insensitive and only the allowed parameters can be
manipulated.

Scheduler Config

The Scheduler Configuration dialogue provides the means to change the
behavior of the Sun Grid Engine scheduler daemon cod_schedd(8). The dialogue
contains a representation for all scheduler configuration parameters as described
in sched_conf(5). It is subdivided in the two sections General Parameters and Load
Adjustments which can be selected via the corresponding tabs. The Ok button
registers any changes with cod_gmaster(8).

Chapter 4 Reference Manual 285

286

Calendar Config

The Calendar Config allows the administrator to add new calendars or to modify
or delete existing ones (see calendar_conf(5)). The dialogue offers a selection list for
the existing calendars and displays the configuration of the one being selected. By
pushing the Delete button, the selected calendar is deleted from the
configuration. Pushing the Add/Modify button will open a calendar
configuration dialogue, which allows to create new calendars or which provides
the means to change the existing ones. The Ok button registers the additional or
modified calendar with cod_gmaster(8).

User Config

User permissions are controlled via the User Config dialogue. The tab widget in
the left section of the dialogue allows for selecting between

Configuration of Manager accounts.

Configuration of Operator accounts.

Definition of Usersets.

Definition of User accounts (Sun Grid Engine, Enterprise Edition mode only).

Those user accounts added to the list of manager or operator accounts are given
permission to act as managers or operators respectively when accessing Sun Grid
Engine under their own account.

The userset lists are used together with the user_lists and xuser_lists host, queue,
project and cluster configuration parameters (see queue_conf(5), project(5) and
sge_conf(5)) to control access of users to hosts, queues, projects (only available in a
Sun Grid Engine, Enterprise Edition system) and the entire cluster. A userset is
just a collection of user names and UNIX group names. Group names are
identified by prefixing them with a “@” sign. The already defined usersets are
displayed in a selection list. These lists can be modified and new lists can be
created using the Userset definition dialogue.

In a Sun Grid Engine, Enterprise Edition system usersets can be used as Access
List (equivalent to their usage in a Sun Grid Engine system) and/or as
Department required for the so called Functional Policy and Override Policy (see
Ticket Config below).

A Sun Grid Engine, Enterprise Edition system also requires adding accounts
having access to the system as entries to the Sun Grid Engine, Enterprise Edition
user database (see user(5)This can be done with the User sub-dialogue.

The Tickets button in the button list on the right side of the dialogue opens the
Ticket Config dialogue (see below). This is also only available in a Sun Grid
Engine, Enterprise Edition system.

Sun Grid Engine ¢ July 2001

PE Config

Parallel environment (PE) interfaces can be configured with this dialogue. PE
interfaces are necessary to describe the way how parallel programming
environments like PVM (Parallel Virtual Machine), MPI (Message Passing
Interface) or shared memory parallel systems are to be instantiated and to impose
access restrictions onto the PEs. When the dialogue is opened a list of the already
configured PEs is displayed together with the current configuration (see
pe_conf(5)) of the selected PE interface. To add new PE interfaces or to modify
existing ones, an Add and a Modify button is available which opens a PE
interface configuration sub-dialogue. After applying the changes and quitting this
sub-dialogue with the OK button, the new or modified PE interface is registered
with cod_gmaster(8).

Checkpoint Config

Checkpointing environment interfaces can be configured with this dialogue.
Checkpointing environments are necessary to describe the attributes which the
different checkpointing methods and their derivatives on various operating
system platforms supported by Sun Grid Engine have. When the dialogue is
opened a list of the already configured checkpointing environments is displayed
together with the current configuration (see checkpoint(5)) of the selected
checkpointing environment. To add new checkpointing environment or to modify
existing ones, an Add and a Modify button is available which opens a
checkpointing environment configuration sub-dialogue. After applying the
changes and quitting this sub-dialogue with the OK button, the new or modified
checkpointing environment is registered with cod_gmaster(8).

Ticket Conf

This dialogue offers an overview and editing screen for allocating tickets to the
share-based, functional and override scheduling policies. It is only supported in
case of a Sun Grid Engine, Enterprise Edition system. It is not available for Sun
Grid Engine systems.

The Deadline Job button opens the User Conf dialogue box. Please change to the
Userset sub-dialogue and select the userset named “deadlineusers”. Only users of
this userset may submit deadline jobs.

The Share Tree Policy button opens the dialogue for creating and editing the Sun
Grid Engine, Enterprise Edition share tree (see share_tree(5) and schedd_conf(5) for
a description of the configuration parameters).

The Functional Policy button opens the dialogue for creating and editing the
allocation of the functional shares (see sched_conf(5), access_list(5), project(5),
queue_conf(5) and user(5) for a description of the different types of functional
shares and the configurable weighting parameters).

Chapter 4 Reference Manual 287

288

The Override Policy button opens the dialogue for creating and editing the
allocation of override tickets (see access_list(5), project(5), queue_conf(5) and user(5)
for a description of the different types of override tickets).

Project Conf

Browser

Exit

This button opens a dialogue for creating projects. It is only supported in case of
a Sun Grid Engine, Enterprise Edition system. It is not available for Sun Grid
Engine systems.

The dialogue offers a selection list for the existing projects and displays the
configuration of the one being selected. By pushing the Delete button, the
selected project is deleted from the configuration. Pushing the Add/Modify
button will open a project configuration dialogue, which allows to create new
projects or which provides the means to change the existing ones. Project
configuration in essence means giving or denying access to a project for usersets
(see User Conf above as well as project(5)). The Ok button registers the additional
or modified project with cod_gmaster(8).

The Object Browser dialogue’s purpose is manifold: First of all, Sun Grid Engine
and gmon messages such as notification of error or success concerning a
previously taken action can be displayed in the dialogue’s output window. Also
the standard output and the standard error output of gmon can be diverted to the
Object Browser output window.

Additionally the Object Browser can be used to display continuous information
about Sun Grid Engine objects as the mouse pointer moves over their
representation as icons or table entries in other gmon dialogues. Currently, only
the display of the configuration of two Sun Grid Engine objects in two separate
dialogues is supported:

= Queue configurations are displayed as soon as the mouse pointer enters a
queue icon in the top level Queue Control dialogue (see above). This facility is
activated by pushing the Queue button in the Object Browser dialogue.

s Detailed job information is printed as soon as the user moves the mouse
pointer over a line in the Job Control dialogue (see above) being assigned to a
running or pending job.

= Additionally job scheduling information is displayed in the browser if the Why
? button in the Job Control dialogue is pressed. In this case the Browser
dialogue is opened implicitly and any scheduling related information is
displayed.

The Exit icon button is not linked with a dialogue. Its sole purpose is to close all
active gmon dialogues and to exit the application.

Sun Grid Engine ¢ July 2001

RESOURCES

The available resources, their meaning and the syntax to be followed in order to modify them are described in
the default gmon resource file (see the section Files below for the location of the resource file).

ENVIRONMENTAL VARIABLES

CODINE_ROOT

Specifies the location of the Sun Grid Engine standard configuration files. If not set a default of
/usr/CODINE is used.

COD_CELL

If set, specifies the default Sun Grid Engine cell. To address a Sun Grid Engine cell gmon uses (in the
order of precedence):

The name of the cell specified in the environment
variable COD_CELL, if it is set.
The name of the default cell, i.e. default.
COD_DEBUG_LEVEL

If set, specifies that debug information should be written to stderr. In addition the level of detail in which
debug information is generated is defined.

COMMD_PORT

If set, specifies the tcp port on which cod_commd(8) is expected to listen for communication requests.
Most installations will use a services map entry instead to define that port.

COMMD_HOST

If set, specifies the host on which the particular cod_commd(8) to be used for Sun Grid Engine
communication of the gmon client resides. Per default the local host is used.

RESTRICTIONS

If the line to be entered in an editing window is longer than the width of the window, then the text just runs off
the end of the window.

Chapter 4 Reference Manual 289

FILES

<codine_root>/gmon/Qmon
QOmon sample resources file

Jusr/lib/X 1 1/defaults/Qmon

QOmon system resources file
SHOME/Qmon

QOmon user resources file
SHOME/.qmon_preferences

QOmon job/queue customization file

SEE ALSO

sge_intro(1), sge_conf(5), access_list(5), sge_pe(5), calendar_conf(5), complex(5), project(5), queue_conf{(5),
sched_conf(5), user(5), cod_gmaster(8).

COPYRIGHT

See sge_intro(1) and the information provided in <cod_root>/3rd_party/qmon for a statement of further rights
and permissions and for credits to be given to public domain and freeware widget developers.

290 Sun Grid Engine * July 2001

QRLS(1)

NAME

qrls — release Sun Grid Engine jobs from previous hold states

SYNTAX

qrls [-h {ulols},...] [-help] [job/task_id_list]
qrls [-h {ulols},...] [-help] -u user_list | -uall

DESCRIPTION

QOrls provides a means for a user/operator/manager to release so called holds from one or more jobs pending to
be scheduled for execution. As long as any type of hold is assigned to a job, the job is not eligible for
scheduling.

Holds can be assigned to jobs with the ghold(1), gsub(1) or the galter(1) command.
There are three different types of holds:
user
User holds can be assigned and removed by managers, operators and the owner of the jobs.
operator
Operator holds can be assigned and removed by managers and operators.
system
System holds can be assigned and removed by managers only.
If no hold type is specified with the —h option (see below) the user hold is assumed by default.

An alternate way to release holds is the galter(1) command (see the —h option).

OPTIONS

-h {ulols},...
Releases a u(ser), o(perator) or s(system) hold or a combination thereof from one or more jobs.
—help

Prints a listing of all options.

Chapter 4 Reference Manual 291

—u username,... | -uall

Modifies the hold state of those jobs which were submitted by users specified in the list of usernames. For
managers it is possible to use the qrls -uall command to modify the hold state for jobs of all users.

If you use the —u or —uall switch it is be permitted to specify an additional job/task_id_list.
job/task_id_list

Specified by the following form:

job_id[.task_range][,job_id[.task_range],...]

If present, the task_range restricts the effect of the operation to the job array task range specified as suffix
to the job id (see the —t option to gsub(1) for further details on job arrays).

The task range specifier has the form n[-m[:s]]. The range may be a single number, a simple range of the
form n-m or a range with a step size.

Instead of job/task_id_list it is possible to use the keyword *all’ to modify all jobs of the current user.

ENVIRONMENTAL VARIABLES

CODINE_ROOT

Specifies the location of the Sun Grid Engine standard configuration files. If not set a default of
/usr/CODINE is used.

COD_CELL

If set, specifies the default Sun Grid Engine cell. To address a Sun Grid Engine cell grls uses (in the order
of precedence):

The name of the cell specified in the environment
variable COD_CELL, if it is set.
The name of the default cell, i.e. default.
COD_DEBUG_LEVEL

If set, specifies that debug information should be written to stderr. In addition the level of detail in which
debug information is generated is defined.

COMMD_PORT

If set, specifies the tcp port on which cod_commd(8) is expected to listen for communication requests.
Most installations will use a services map entry instead to define that port.

COMMD_HOST

If set, specifies the host on which the particular cod_commd(8) to be used for Sun Grid Engine
communication of the gris client resides. Per default the local host is used.

292 Sun Grid Engine * July 2001

SEE ALSO

sge_intro(1), qalter(1), qhold(1), gsub(1).

COPYRIGHT

See sge_intro(1) for a full statement of rights and permissions.

Chapter 4 Reference Manual 293

QSELECT(1)

NAME

gselect — select queues.

SYNTAX

gselect [-help] [-1 resource=val,...] [-pe pe_name,...]
[-q queue,...] [-U user,...]

DESCRIPTION

gselect prints a list of Sun Grid Engine queue names corresponding to selection criteria specified in the gselect
arguments described below. The output of gselect can be fed into other Sun Grid Engine commands to apply
actions on the selected queue sets. For example together with the —mgqattr option to gconf{1), gselect can be
used to modify queue attributes on a set of queues.

OPTIONS

—help

Prints a listing of all options.
-1 resource[=value]....

Defines the resources to be granted by the queues which should be included in the queue list output.
—pe pe_name,...

Includes queues into the output which are attached to at least one of the parallel environments enlisted in
the comma separated option argument.

—q queue,...

Directly specifies the queues to be included in the output. This option usually is only meaningful in
conjunction with another gselect option to extract a subset of queue names from a list given by —q.

—U user,...

Includes the queues to which the specified users have access in the gselect output.

294 Sun Grid Engine * July 2001

EXAMPLES

gselect -l arch=linux
gselect - arch=linux -U andreas,shannon
gconf -mqattr h_vmem=1GB ‘gselect -l arch=linux

The first example prints the names of those queues residing on Linux machines. The second command in
addition restricts the output to those queues with access permission for the users andreas and shannon. The
third command changes the queue attribute #_vmem to 1 Gigabyte on queues residing on Linux machines (see
the gconf{1) manual page for details on the —mgattr option and the queue_conf(5) manual page on details of
queue configuration entries).

ENVIRONMENTAL VARIABLES

CODINE_ROOT

Specifies the location of the Sun Grid Engine standard configuration files. If not set a default of
/usr/CODINE is used.

COD_CELL

If set, specifies the default Sun Grid Engine cell. To address a Sun Grid Engine cell gselect uses (in the
order of precedence):

The name of the cell specified in the environment
variable COD_CELL, if it is set.
The name of the default cell, i.e. default.
COD_DEBUG_LEVEL

If set, specifies that debug information should be written to stderr. In addition the level of detail in which
debug information is generated is defined.

COMMD_PORT

If set, specifies the tcp port on which cod_commad(8) is expected to listen for communication requests.
Most installations will use a services map entry instead to define that port.

COMMD_HOST

If set, specifies the host on which the particular cod_commd(8) to be used for Sun Grid Engine
communication of the gselect client resides. Per default the local host is used.

Chapter 4 Reference Manual 295

FILES

<codine_root>/<cell>/common/act_gmaster
Sun Grid Engine master host file

SEE ALSO

sge_intro(1), gconf(1), gmod(1), gstat(1), queue_conf(5), cod_commd(8).

COPYRIGHT

See sge_intro(1) for a full statement of rights and permissions.

296 Sun Grid Engine * July 2001

QSTAT(1)

NAME

gstat — show the status of Sun Grid Engine jobs and queues

SYNTAX

gstat [-ext][-f][-F [resource_name,...]] [-gd][-help]
[-j [job_list]] [-1 resource=val,...] [-ne]
[-pe pe_name,...] [-q queue,...] [-1]
[-s {riplsizlhulholhslhjlhalh}[+]]] [-t] [-U user,...]
[-u user,... |

gstat [—f] —gstd [hostname]

DESCRIPTION

gstat shows the current status of the available Sun Grid Engine queues and the jobs associated with the
queues. Selection options allow you to get information about specific jobs, queues or users. Without any
option gstat will display only a list of jobs with no queue status information.

In the second form gstar displays the status of the Queueing System Transfer Daemons (see cod_gstd(8))
currently in operation. There are only cod_gstds running if the Sun Grid Engine Queueing System Interface
(QSI) is licensed and properly installed. Please refer to the Sun Grid Engine Installation and Administration
Guide for detailed information.

OPTIONS

—alarm

Displays the reason(s) for queue alarm states. Outputs one line per reason containing the resource value
and threshold. For details about the resource value please refer to the description of the Full Format in
section OUTPUT FORMAT'S below.

—ext

This option is only supported in case of a Sun Grid Engine, Enterprise Edition system. It is not available
for Sun Grid Engine systems.

Displays additional Sun Grid Engine, Enterprise Edition relevant information for each job (see OUTPUT
FORMATS below).

Chapter 4 Reference Manual 297

—f
Specifies a “full” format display of information. The —f option causes summary information on all queues
to be displayed along with the queued job list.

—F [resource_name,... |

Like in the case of —f information is displayed on all jobs as well as queues. In addition, gstat will present
a detailed listing of the current resource availability per queue with respect to all resources (if the option
argument is omitted) or with respect to those resources contained in the resource_name list. Please refer to
the description of the Full Format in section OUTPUT FORMATS below for further detail.

-g d
Displays job arrays verbosely in a one line per job task fashion. By default, job arrays are grouped and all

tasks with the same status (for pending tasks only) are displayed in a single line. The job array task id
range field in the output (see section OUTPUT FORMAT'S) specifies the corresponding set of tasks.

The —g switch currently has only the single option argument d. Other option arguments are reserved for
future extensions.

—help
Prints a listing of all options.
—j [job_list]
Prints either for all pending jobs or the jobs contained in job_list the reason for not being scheduled.

-1 resource[=value],...

Defines the resources required by the jobs or granted by the queues on which information is requested.
Matching is performed on queues. The pending jobs are restricted to jobs that might run in one of the
above queues.

-ne

In combination with —f the option suppresses the display of empty queues. This means all queues where
actually no jobs are running are not displayed.

—pe pe_name,...

Displays status information with respect to queues which are attached to at least one of the parallel
environments enlisted in the comma separated option argument. Status information for jobs is displayed
either for those which execute in one of the selected queues or which are pending and might get scheduled
to those queues in principle.

—q queue,...

Specifies the queue to which job information is to be displayed.

Prints extended information about the resource requirements of the displayed jobs. Please refer to the
OUTPUT FORMATS sub-section Expanded Format below for detailed information.

298 Sun Grid Engine * July 2001

—s {plrisizthulholhslhjlhalh}[+]

Prints only jobs in the specified state, any combination of states is possible. —s prs corresponds to the
regular gstat output without —s at all. To show recently finished jobs, use —s z. To display jobs in
user/operator/system hold, use the —s hu/ho/hs option. The —s ha option shows jobs which where
submitted with the gsub —a command. gstat —s hj displays all jobs which are not eligible for execution
unless the job has entries in the job dependency list. (see —a and —hold_jid option to gsub(1)).

Prints extended information about the controlled sub-tasks of the displayed parallel jobs. Please refer to
the OUTPUT FORMAT'S sub-section Expanded Format below for detailed information. Sub-tasks of
parallel jobs should not be confused with job array tasks (see —g option above and —t option to gsub(1)).

-U user,...

Displays status information with respect to queues to which the specified users have access. Status
information for jobs is displayed either for those which execute in one of the selected queues or which are
pending and might get scheduled to those queues in principle.

—u user,...

Display information only on those jobs and queues being associated with the users from the given user list.
Queue status information is displayed if the —f or —F options are specified additionally and if the user runs
jobs in those queues.

—qstd [hostname]

Display the status of other queueing systems configured to be interfaced by Sun Grid Engine. Without the
optional hostname gstat displays information on all transfer queues and the corresponding hosts. If the
hostname is present, the information provided only refers to that host.

If an additional —f switch is provided, gstat lists a rather complete set of information about the transfer
queue(s) and the corresponding host(s). If the —f switch is absent, the status listing only contains
information about the jobs having been forwarded to the other queueing systems by Sun Grid Engine. This
option is only operational if the Sun Grid Engine queueing system interface is licensed and properly
installed. Please ask your system administrator.

OUTPUT FORMATS

Depending on the presence or absence of the -alarm, —f or —F and —r and —t option three output formats need
to be differentiated. PP In case of a Sun Grid Engine, Enterprise Edition system, the —ext option may be used
to display additional information for each job.

Reduced Format (without —f and —F)

Following the header line a line is printed for each job consisting of
= the job ID.

Chapter 4 Reference Manual 299

300

= the priority of the jobs as assigned to them via the —p option to gsub(1) or
galter(1) determining the order of the pending jobs list.

= the name of the job.

= the user name of the job owner.

» the status of the job — one of t(ransfering), r(unning), R(estarted), s(uspended),
S(uspended), T(hreshold), w(aiting) or h(old).

The states t(ransfering) and r(unning) indicate that a job is about to be executed or
is already executing, whereas the states s(uspended), S(uspended) and
T(hreshold) show that an already running jobs has been suspended. The
s(uspended) state is caused by suspending the job via the gmod(1) command, the
S(uspended) state indicates that the queue containing the job is suspended and
therefore the job is also suspended and the T(hreshold) state shows that at least
one suspend threshold of the corresponding queue was exceeded (see
queue_conf(5)) and that the job has been suspended as a consequence. The state
R(estarted) indicates that the job was restarted. This can be caused by a job
migration or because of one of the reasons described in the -r section of the
gsub(1) command.

The states w(aiting) and h(old) only appear for pending jobs. The h(old) state
indicates that a job currently is not eligible for execution due to a hold state
assigned to it via ghold(1), galter(1) or the gsub(1) -h option or that the job is
waiting for completion of the jobs to which job dependencies have been assigned
to the job via the —hold_jid option of gsub(1) or galter(1).

= the submission or start time and date of the job.

= the queue the job is assigned to (for running or suspended jobs only).

= the function of the running jobs (MASTER or SLAVE - the latter for parallel
jobs only).

= the job array task id. Will be empty for non-array jobs. See the —t option to
gsub(1) and the —g above for additional information.

If the -t option is supplied, each job status line also contains

= the parallel task ID (do not confuse parallel tasks with job array tasks),

= the status of the parallel task — one of r(unning), R(estarted), s(uspended),
S(uspended), T(hreshold), w(aiting), h(old), or x(exited).

= the cpu, memory, and I/O usage (Sun Grid Engine, Enterprise Edition only),

= the exit status of the parallel task,

= and the failure code and message for the parallel task.

Full Format (with —f and —F)

Following the header line a section for each queue separated by a horizontal line
is provided. For each queue the information printed consists of

= the queue name,

= the queue type - one of B(atch), I(nteractive), C(heckpointing), P(arallel),
T(ransfer) or combinations thereof,

= the number of used and available job slots,

Sun Grid Engine ¢ July 2001

= the load average of the queue host,

» the architecture of the queue host and

= the state of the queue — one of u(nknown) if the corresponding cod_execd(8)
cannot be contacted, a(larm), A(larm), C(alendar suspended), s(uspended),
S(ubordinate), d(isabled), D(isabled), E(rror) or combinations thereof.

If the state is a(larm) at least on of the load thresholds defined in the
load_thresholds list of the queue configuration (see queue_conf(5)) is
currently exceeded, which prevents from scheduling further jobs to that
queue.

As opposed to this, the state A(larm) indicates that at least one of the
suspend thresholds of the queue (see queue_conf(5)) is currently exceeded.
This will result in jobs running in that queue being successively
suspended until no threshold is violated.

The states s(uspended) and d(isabled) can be assigned to queues and
released via the gmod(1) command. Suspending a queue will cause all
jobs executing in that queue to be suspended.

The states D(isabled) and C(alendar suspended) indicate that the queue
has been disabled or suspended automatically via the calendar facility of
Sun Grid Engine (see calendar_conf(5)), while the S(ubordinate) state
indicates, that the queue has been suspend via subordination to another
queue (see queue_conf(5) for details). When suspending a queue
(regardless of the cause) all jobs executing in that queue are suspended
too.

If an E(rror) state is displayed for a queue, cod_execd(8) on that host was
unable to locate the cod_shepherd(8) executable on that host in order to
start a job. Please check the error logfile of that cod_execd(8) for leads on
how to resolve the problem. Please enable the queue afterwards via the
-c option of the gmod(1) command manually.

If the -F option was used, resource availability information is printed
following the queue status line. For each resource (as selected in an
option argument to —F or for all resources if the option argument was
omitted) a single line is displayed with the following format:

= a one letter specifier indicating whether the current resource availability value

was dominated by either

‘g’ - a cluster global,

‘h’ - a host total or

‘q’ - a queue related resource consumption.

a second one letter specifier indicating the source for the current resource

availability value, being one of

‘1’ - a load value reported for the resource,

» ‘L’ - aload value for the resource after administrator defined load scaling has
been applied,

Chapter 4 Reference Manual 301

302

= '’ - availability derived from the consumable resources facility (see
complexes(5)), ‘v’ - a default complexes configuration value never overwritten
by a load report or a consumable update or

s ‘f’ - a fixed availability definition derived from a non-consumable complex
attribute or a fixed resource limit.

= after a colon the name of the resource on which information is displayed.

= after an equal sign the current resource availability value.

The displayed availability values and the sources from which they derive are
always the minimum values of all possible combinations. Hence, for example, a
line of the form “qf:h_vmem=4G”" indicates that a queue currently has a
maximum availability in virtual memory of 4 Gigabyte, where this value is a fixed
value (e.g. a resource limit in the queue configuration) and it is queue dominated,
i.e. the host in total may have more virtual memory available than this, but the
queue doesn’t allow for more. Contrarily a line “hl:h_vmem=4G” would also
indicate an upper bound of 4 Gigabyte virtual memory availability, but the limit
would be derived from a load value currently reported for the host. So while the
queue might allow for jobs with higher virtual memory requirements, the host on
which this particular queue resides currently only has 4 Gigabyte available.

If the —alarm option was used, information about resources is displayed, that
violate load or suspend thresholds.

The same format as with the -F option is used with following extensions:

= the line starts with the keyword ‘alarm’
= appended to the resource value is the type and value of the appropriate
threshold

After the queue status line (in case of —f) or the resource availability information
(in case of —F) a single line is printed for each job running currently in this queue.
Each job status line contains

the job ID,

the job name,

the job owner name,

the status of the job — one of t(ransfering), r(unning), R(estarted), s(uspended),

S(uspended) or T(hreshold) (see the Reduced Format section for detailed

information),

» the start date and time and the function of the job (MASTER or SLAVE - only
meaningful in case of a parallel job) and

= the priority of the jobs.

If the -t option is supplied, each job status line also contains

s the task ID,

= the status of the task — one of r(unning), R(estarted), s(uspended), S(uspended),
T(hreshold), w(aiting), h(old), or x(exited) (see the Reduced Format section for
detailed information),

= the cpu, memory, and I/O usage (Sun Grid Engine, Enterprise Edition only),

= the exit status of the task,

Sun Grid Engine ¢ July 2001

and the failure code and message for the task.

Following the list of queue sections a PENDING JOBS list may be printed in case
jobs are waiting for being assigned to a queue. A status line for each waiting job
is displayed being similar to the one for the running jobs. The differences are that
the status for the jobs is w(aiting) or h(old), that the submit time and date is
shown instead of the start time and that no function is displayed for the jobs.

In very rare cases, e.g. if cod_qmaster(8) starts up from an inconsistent state in the
job or queue spool files or if the clean queue (—cq) option of gconf(1) is used, gstat
cannot assign jobs to either the running or pending jobs section of the output. In
this case as job status inconsistency (e.g. a job has a running status but is not
assigned to a queue) has been detected. Such jobs are printed in an ERROR JOBS
section at the very end of the output. The ERROR JOBS section should disappear
upon restart of cod_gmaster(8). Please contact your Sun Grid Engine support
representative if you feel uncertain about the cause or effects of such jobs.

Expanded Format (with —r)

If the —r option was specified together with gstat, the following information for
each displayed job is printed (a single line for each of the following job
characteristics):

s The hard and soft resource requirements of the job as specified with the gsub(1)
-1 option.

» The requested parallel environment including the desired queue slot range (see
—pe option of gsub(1)).

= The requested checkpointing environment of the job (see the gsub(1) —ckpt
option).

] Ir]f case of running jobs, the granted parallel environment with the granted
number of queue slots.

Enhanced Sun Grid Engine, Enterprise Edition Output (with —ext)

For each job the following additional items are displayed:

project

The project to which the job is assigned as specified in the gsub(1) -P option.
department

The department, to which the user belongs (use the —sul and —su options of
geonf(1) to display the current department definitions).

deadline
The deadline initiation time of the job as specified with the gsub(1) —dl option.
cpu

The current accumulated CPU usage of the job.

Chapter 4 Reference Manual 303

mem

The current accumulated memory usage of the job.

io

The current accumulated 1O usage of the job.

tckts

The total number of tickets assigned to the job currently

ovrts

The override tickets as assigned by the —ot option of galter(1).

otckt

The override portion of the total number of tickets assigned to the job currently
dtckt

The deadline portion of the total number of tickets assigned to the job currently
ftckt

The functional portion of the total number of tickets assigned to the job currently
stckt

The share portion of the total number of tickets assigned to the job currently
share

The share of the total system to which the job is entitled currently.

ENVIRONMENTAL VARIABLES

CODINE_ROOT

Specifies the location of the Sun Grid Engine standard configuration files. If not set a default of
/usr/CODINE is used.

COD_CELL

If set, specifies the default Sun Grid Engine cell. To address a Sun Grid Engine cell gstat uses (in the order
of precedence):

The name of the cell specified in the environment
variable COD_CELL, if it is set.
The name of the default cell, i.e. default.
COD_DEBUG_LEVEL

If set, specifies that debug information should be written to stderr. In addition the level of detail in which
debug information is generated is defined.

304 Sun Grid Engine * July 2001

COMMD_PORT

If set, specifies the tcp port on which cod_commad(8) is expected to listen for communication requests.

Most installations will use a services map entry instead to define that port.
COMMD_HOST

If set, specifies the host on which the particular cod_commd(8) to be used for Sun Grid Engine
communication of the gszat client resides. Per default the local host is used.

FILES

<codine_root>/<cell>/common/act_gmaster
Sun Grid Engine master host file

SEE ALSO

sge_intro(1), galter(1), gconf(1), qghold(1), qhost(1), gmod(1), qsub(1), queue_conf(5), cod_commd(8),
cod_execd(8), cod_gmaster(8), cod_qstd(8), cod_shepherd(§).

COPYRIGHT

See sge_intro(1) for a full statement of rights and permissions.

Chapter 4 Reference Manual

305

QTCSH(1)

NAME

qtcsh — tcsh v6.09 with transparent remote execution by use of qrsh.

SYNTAX

qtcsh [tcsh options | -ABLR |

DESCRIPTION

Qtcsh is an extension to the popular csh(1) derivative tcsh. It allows the transparent remote execution
commands entered in gtcsh controlled via Sun Grid Engine. Qfcsh can be used as interactive command
interpreter as well as for the processing of zcsh shell scripts.

When invoked, gfcsh identifies which commands are to be run remotely and which are not. For this purpose
the files <cod_root>/<cell>/common/qtask and ~/.qtask are processed. Each line in these files defines a
command that is intended to be run remotely (see gtask(5) for a definition of the file format). The .qtask file in
the user’s home direcory contains the user’s remote task specification, while the file in the common directory
is maintained by the administrator and defines a cluster-wide default behavior. The contents of the
administrator supplied gtask(5) file are completely overridden in case there is an appropriate entry in the users
qtask(5) file. This is prevented in case an exclamation mark is prefixed to the command name in the
administrators qtask file.

Qtesh always attempts to start the designated tasks remotely via grsh(1). Exceptions are

1 if the user enters such commands via a relative or absolute pathname instead of the stand-alone command
name (see gtask(5) for more information).

1 if the environment variable JOB_ID is set and thus gtcsh assumes that execution already happens remotely
within a Sun Grid Engine job and thus executes tasks locally. This avoids unwanted recursions but can be
overridden by the command-line option —R and the built-in command grshmode —R (see corresponding
descriptions below).

1 if gtcsh cannot establish a connection of Sun Grid Engine during start-up. This allows to use gfcsh as login
shell without the danger of being blocked when no Sun Grid Engine service is available.

Qtcsh can operate in three different modes determining whether

1 tasks are executed remotely.
1 immediate or batch execution is requested.
1 status output is verbose or only in case of any errors.

306 Sun Grid Engine * July 2001

These modes either can be controlled by the command-line switches described below during gtcsh invocation
or within an executing gtcsh via the built-in command grshmode as described in section BUILT-IN
COMMANDS.

OPTIONS

The options enlisted below are special to gtcsh. The user is referred to the fcsh(1) documentation for the
explanation of further options.

-A
Switches gtcsh in verbose mode causing diagnostic output in case of remote execution.

-B
Switches remote task execution to batch mode. Tasks submitted to Sun Grid Engine will be queued if they
cannot start immediately. As a consequence, gtcsh may block until the queued task can be started by Sun
Grid Engine. While this behavior probably is undesirable during an interactive session, it may be very

useful for execution of shell scripts through gtcsh as it avoids failure of the scripts due to temporarily
unavailable resources for particular tasks.

-L

Switches off default behavior of remote execution of commands. Causes all commands to be executed
locally even if they are contained in one of the grask(5) files.

R

Enforces remote execution of commands even if JOB_ID is set as environment variable.

BUILT-IN COMMANDS

This section only describes additional shell builtin commands which are not available in standard tcsh(1).
grshmode [-ANBILR]

Without options, the current operational mode of gfcsh is displayed. The options have the following effect:

-A switch to verbose output mode

-N switch to non-verbose output mode

-B switch to batch execution mode

-1 switch to immediate execution mode

-L always execute commands locally

-R execute configured commands remotely

Chapter 4 Reference Manual 307

ENVIRONMENTAL VARIABLES

CODINE_ROOT

Specifies the location of the Sun Grid Engine standard configuration files. If not set a default of
/usr/CODINE is used.

COD_CELL

If set, specifies the default Sun Grid Engine cell. To address a Sun Grid Engine cell gzcsh uses (in the order
of precedence):

The name of the cell specified in the environment
variable COD_CELL, if it is set.
The name of the default cell, i.e. default.
COD_DEBUG_LEVEL

If set, specifies that debug information should be written to stderr. In addition the level of detail in which
debug information is generated is defined.

COMMD_PORT

If set, specifies the tcp port on which cod_commad(8) is expected to listen for communication requests.
Most installations will use a services map entry instead to define that port.

COMMD_HOST

If set, specifies the host on which the particular cod_commd(8) to be used for Sun Grid Engine
communication of the gtcsh client resides. Per default the local host is used.

FILES

~/.qtask user qtask file.
<cod_root>/<cell>/common/qtask
cluster qtask file.

SEE ALSO

sge_intro(1), grsh(1), qtask(5) as well as tcsh(1) in <cod_root>/3rd_party/qtcsh.

308 Sun Grid Engine * July 2001

COPYRIGHT

Qtcsh contains portions of fcsh which is copyrighted by The Regents of the University of California.
Therefore, the following note applies: This product includes software developed by the University of
California, Berkeley and its contributors.

See sge_intro(1) and the information provided in <cod_root>/3rd_party/qtcsh for a statement of further rights
and permissions.

Chapter 4 Reference Manual 309

SUBMIT(1)

NAME

gsub — submit a batch job to Sun Grid Engine.

gsh — submit an interactive X-windows session to Sun Grid Engine.

glogin — submit an interactive login session to Sun Grid Engine.
grsh — submit an interactive rsh session to Sun Grid Engine.
qalter — modify a pending batch job of Sun Grid Engine.

gresub — submit a copy of an existing Sun Grid Engine job.

SYNTAX

qsub [options] [scriptfile | - [script_args]]

gsh [options] [-- xterm_args]

qlogin [options]

qrsh [options | [command [command_args]]

qalter [options] job/task_id_list [-- [script_args]]
qalter [options] -u user_list | -uall [-- [script_args]]

gresub [options] job_id_list

DESCRIPTION

Qsub submits batch jobs to the Sun Grid Engine queuing system. Sun Grid Engine supports single and
multiple node jobs. scriptfile contains the commands to be run by the job using a shell (for example, sh(1) or
csh(1)). Arguments to the job script are given by script_args. Sun Grid Engine flags may be entered as
arguments to gsub or as embedded flags in the scriptfile if the first two characters of a script line either match

"#3$’ or are equal to the prefix string defined with the -C option described below.

QOsh submits an interactive X-windows session to Sun Grid Engine. An xterm(1) is brought up from the
executing machine with the display directed either to the X-server indicated by the DISPLAY environment
variable or as specified with the —display gsh option. Interactive jobs are not spooled if no resource is
available to execute them. They are either dispatched to a suitable machine for execution immediately or the
user submitting the job is notified by gsh that appropriate resources to execute the job are not available.

xterm_args are passed to the xterm(1) executable.

310 Sun Grid Engine * July 2001

Qlogin is similar to gsh in that it submits an interactive job to the queueing system. It does not open an
xterm(1) window on the X display, but uses the current terminal for user I/O. Usually, glogin establishes a
telnet(1) connection with the remote host, using standard client- and server-side commands. These commands
can be configured with the qlogin_daemon (server-side, Sun Grid Engine felnetd if not set, otherwise
something like /usr/sbin/in.telnetd) and qlogin_command (client-side, Sun Grid Engine telnet if not set,
otherwise something like /usr/bin/telnet) parameters in the global and local configuration settings of
sge_conf{5). The client side command is automatically parameterized with the remote host name and port
number to connect to (i.e. resulting in an invocation like /usr/bin/telnet my_exec_host 2442). Qlogin is
invoked exactly like gsh and its jobs can only run on INTERACTIVE queues. Qlogin jobs can only be used if
the cod_execd(8) is running under the root account.

QOrsh is similar to glogin in that it submits an interactive job to the queuing system. It uses the current terminal
for user I/0O. Usually, grsh establishes a rsh(1) connection with the remote host. If no command is given to
qrsh, a rlogin(1) session is established. The server-side commands used can be configured with the
rsh_daemon and rlogin_daemon parameters in the global and local configuration settings of sge_conf(5). A
Sun Grid Engine rshd or rlogind is used, if the parameters are not set or otherwise something like
/usr/sbin/in.rshd or /usr/sbin/in.rlogind needs to be configured. On the client-side, the rsh_command and
rlogin_command parameters can be set in the global and local configuration settings of sge_conf(5). If they
are not set, rsh(1) and rlogin(1) binaries delivered with Sun Grid Engine are used. Use the cluster
configuration to integrate mechanisms like ssh or the rsh(1) and rlogin(1) facilities supplied with the
operating system.

Qrsh jobs can only run in INTERACTIVE queues unless the option -now no is used (see below). They can
only be used, if the cod_execd(8) is running under the root account.

QOrsh provides an additional feature useful for the integration with interactive tools providing a specific
command shell. If the environment variable QRSH_WRAPPER is set when grsh is invoked, the command
interpreter pointed to by QRSH_WRAPPER will be executed to run grsh commands instead of the users
login shell or any shell specified in the grsh command-line.

Qalter can be used to change the attributes of pending jobs. Once a job is executing, changes are no longer
possible. For job arrays, for which a part of the tasks can be pending and another part can be running (see the
—t option below), modifications with galter only affect the pending tasks. Qalter can change most of the
characteristics of a job (see the corresponding statements in the OPTIONS section below), including those
which were defined as embedded flags in the script file (see above).

Qresub allows to create jobs as copies from existing pending or running jobs. The copied jobs will have
exactly the same attributes as the ones from which they are copied, but a new job ID. The only modification to
the copied jobs supported by qresub is to assign a hold state with the -h option. This can be used to first copy
a job and then change its attributes via galter.

For gsub, gsh, qrsh, and glogin the administrator and the user may define default request files (see
cod_request(5)) which can contain any of the options described below. If an option in a default request file is
understood by gsub and glogin but not by gsh the option is silently ignored if gsh is invoked. Thus you can
maintain shared default request files for both gsub and gsh.

Chapter 4 Reference Manual 311

A cluster wide default request file may be placed under

$CODINE_ROOT/$COD_CELL/common/cod_request. User private default request files are processed under

the locations $SHOME/.cod_request and $cwd/.cod_request. The working directory local default request file
has the highest precedence, then the home directory located file and then the cluster global file. The option
arguments, the embedded script flags and the options in the default request files are processed in the following
order:

left to right in the script line,

left to right in the default request files,

from top to bottom of the script file (gsub only),
from top to bottom of default request files,
from left to right of the command line.

In other words, the command line can be used to override the embedded flags and the default request settings.
The embedded flags, however, will override the default settings.

Note = The -clear option can be used to discard any previous settings at any time in a default request
file, in the embedded script flags, or in a command-line option. It is, however, not available with
galter.

The options described below can be requested either hard or soft. By default, all requests are considered hard
until the —soft option (see below) is encountered. The hard/soft status remains in effect until its counterpart is
encountered again. If all the hard requests for a job cannot be met, the job will not be scheduled. Jobs which
cannot be run at the present time remain spooled.

OPTIONS

—@ optionfile

Forces gsub, qrsh, gsh, or qlogin to use the options contained in optionfile. The indicated file may contain
all valid options. Comment lines are starting with a “#” sign.

—a date_time
Available for gsub, grsh, gsh, glogin and galter only.

Defines or redefines the time and date at which a job is eligible for execution. Date_time conforms to
[[CCITYY]MMDDhhmm.[ss], where:

CC denotes the century in 2 digits.
YY denotes the year in 2 digits.
MM denotes the month in 2 digits.
DD denotes the day in 2 digits.

hh denotes the hour in 2 digits.

312 Sun Grid Engine * July 2001

mm denotes the minute in 2 digits.
Ss denotes the seconds in 2 digits (default 00).
If any of the optional date fields is omitted, the corresponding value of the current date is assumed.

Usage of this option may cause unexpected results if the clocks of the hosts in the Sun Grid Engine pool
are out of sync. Also, the proper behavior of this option very much depends on the correct setting of the
appropriate timezone, e.g. in the TZ environment variable (see date(1) for details), when the Sun Grid
Engine daemons cod_gmaster(8) and cod_execd(8) are invoked.

Qalter allows changing this option even while the job executes. The modified parameter will only be in
effect after a restart or migration of the job, however.

—ac variable[=value],...

Available for gsub, grsh, gsh, qlogin and galter only.

Adds the given name/value pair(s) to the job’s context. Value may be omitted. Sun Grid Engine appends
the given argument to the list of context variables for the job. Multiple —ac, —dc, and —sc options may be
given. The order is important here.

Qalter allows changing this option even while the job executes.

—A account_string

Auvailable for gsub, grsh, gsh, qlogin and galter only.

Identifies the account to which the resource consumption of the job should be charged. The
account_string may be any arbitrary ASCII alphanumeric string but may contain no blank or separator
characters. The underbar ’_’ is considered a non-separator. In the absence of this parameter Sun Grid
Engine will place the default account string "cod" in the accounting record of the job.

Qalter allows changing this option even while the job executes.

—c occasion_specifier

Available for gsub and galter only.

Defines or redefines whether the job should be checkpointed, and if so, under what circumstances. The
specification of the checkpointing occasions with this option overwrites the definitions of the when
parameter in the checkpointing environment (see checkpoint(5)) referenced by the gsub —ckpt switch.
Possible values for occasion_specifier are

n no checkpoint is performed.

S checkpoint when batch server is shut down.
m checkpoint at minimum CPU interval.

X checkpoint when job gets suspended.
<interval> checkpoint in the specified time interval.

The minimum CPU interval is defined in the queue configuration (see queue_conf(5) for details).
<interval> has to be specified in the format hh:mm:ss. The maximum of <interval> and the queue’s
minimum CPU interval is used if <interval> is specified. This is done to ensure that a machine is not
overloaded by checkpoints being generated too frequently.

Chapter 4 Reference Manual 313

—ckpt ckpt_name
Available for gsub and galter only.

Selects the checkpointing environment (see checkpoint(5)) to be used for a checkpointing the job. Also
declares the job to be a checkpointing job.

—clear

Auvailable for gsub, grsh, gsh, and glogin only.

Causes all elements of the job to be reset to the initial default status prior to applying any modifications (if
any) appearing in this specific command.

—cwd

Available for gsub, grsh, gsh, glogin and galter only.

Execute the job from the current working directory. This switch will activate Sun Grid Engine’s path
aliasing facility, if the corresponding configuration files are present (see codine_aliases(5)).

In case of galter, the previous definition of the current working directory will be overwritten, if galter is
executed from a different directory than the preceding gsub or galter.

Qalter allows changing this option even while the job executes. The modified parameter will only be in
effect after a restart or migration of the job, however.

—C prefix_string
Available for gsub only.

Prefix_string defines the prefix that declares a directive to gsub in the job’s scriptfile. The prefix is not a
job attribute, but affects the behavior of gsub. If the -C option is presented with the value of the directive
prefix as a null string, gsub will not scan the scriptfile

The directive prefix consists of two ASCII characters which when appearing in the first two bytes of a
script line indicate that what follows is a Sun Grid Engine command (default is “#$”).

The user should be aware that changing the first delimiter character can produce unforeseen side effects. If
the script file contains anything other than a “#” character in the first byte position of the line, the shell
processor for the job will reject the line and may exit the job prematurely.

If the -C option is present in the script file, it is ignored.
—dc variable,...
Available for gsub, grsh, gsh, glogin and galter only.

Removes the given variable(s) from the job’s context. Multiple —ac, —dc¢, and —sc options may be given.
The order is important here.

Qalter allows changing this option even while the job executes.
—display display_specifier
Available for gsh only.

Directs xterm(1) to use display_specifier in order to contact the X server.

314 Sun Grid Engine * July 2001

—dl date_time

Available for gsub, grsh, gsh, glogin and galter only. This option is only supported in case of a Sun Grid
Engine, Enterprise Edition system. It is not available for Sun Grid Engine systems.

Specifies the deadline initiation time in [[CC]Y Y]DDhhmm[.SS] format (see —a option above). The
deadline initiation time is the time at which a deadline job has to reach top priority to be able to complete
within a given deadline. Before the deadline initiation time the priority of a deadline job will be raised
steadily until it reaches the maximum as configured by the Sun Grid Engine administrator.

This option is applicable for users allowed to submit deadline jobs only.

—e [hostname:]path,...

Available for gsub and galter only.

Defines or redefines the path used for the standard error stream of the job. If the path constitutes an
absolute path name, the error-path attribute of the job is set to its value including the hostname. If the path
name is relative, Sun Grid Engine expands path either with the current working directory path in case the
—cwd (see above) switch is also specified or with the home directory path otherwise. If hostname is
present, the standard error stream will be placed under the corresponding location if the job runs on the
specified host.

By default the file name for standard error has the form job_name.ejob_id and job_name.ejob_id.task _id
for job array tasks (see —t option below).

If path is a directory, the standard error stream of the job will be put in this directory under the default file
name. If the pathname contains certain pseudo environment variables, their value will be expanded at
runtime of the job and will be used to constitute the standard error stream path name. The following
pseudo environment variables are supported currently:

$HOME home directory on execution machine
$USER user ID of job owner

$JOB_ID current job ID

$JOB_NAME current job name (see —N option)
$HOSTNAME name of the execution host

$COD_TASK_ID job array task index number
Alternatively to SHOME the tilde sign “~” can be used as common in csh(1) or ksh(1).

Note — The “~” sign also works in combination with user names, so that “~<user>" expands to
the home directory of <user>. Using another user ID than that of the job owner requires
corresponding permissions, of course.

Qalter allows changing this option even while the job executes. The modified parameter will only be in
effect after a restart or migration of the job, however.

Chapter 4 Reference Manual 315

-hard

Available for gsub, grsh, gsh, glogin and galter only.

Signifies that all resource requirements following in the command line will be hard requirements and must
be satisfied in full before a job can be scheduled.

As Sun Grid Engine scans the command line and script file for Sun Grid Engine options and parameters it
builds a list of resources required by a job. All such resource requests are considered as absolutely
essential for the job to commence. If the —soft option (see below) is encountered during the scan then all
following resources are designated as “soft requirements” for execution, or “nice-to-have, but not
essential”. If the —hard flag is encountered at a later stage of the scan, all resource requests following it
once again become “essential”’. The —hard and —soft options in effect act as “toggles” during the scan.

—h I -h {ulslolnlUIOIS}...

Available for gsub, grsh, qsh, qlogin, qalter and gresub.
List of holds to place on the job.

‘o’ denotes a user hold.

‘s’ denotes a system hold.
‘0’ denotes a operator hold.
‘n’ denotes no hold.

As long as any hold other than ‘n’ is assigned to the job the job is not eligible for execution. Holds can be
released via galter and gris(1). In case of galter this is supported by the following additional option
specifiers for the —h switch:

‘U removes a user hold.
‘S’ removes a system hold.
‘o removes a operator hold.

Sun Grid Engine managers can assign and remove all hold types, Sun Grid Engine operators can assign
and remove user and operator holds and users can only assign or remove user holds.

In the case of gsub only user holds can be placed on a job and thus only the first form of the option with
the —h switch alone is allowed. As opposed to this, galter requires the second form described above.

An alternate means to assign hold is provided by the ghold(1) facility.

If the job is a job array (see the —t option below), all tasks specified via —t are affected by the —h operation
simultaneously.

Qalter allows changing this option even while the job executes. The modified parameter will only be in
effect after a restart or migration of the job, however.

—help

316

Prints a listing of all options.

Sun Grid Engine ¢ July 2001

-hold_jid job_id,...
Available for gsub, grsh, gsh, glogin and galter only.

Defines or redefines the job dependency list of the submitted job. The submitted job is not eligible for
execution unless all jobs referenced in the coma separated job id list have completed successfully.

Qalter allows changing this option even while the job executes. The modified parameter will only be in
effect after a restart or migration of the job, however.

—inherit
Available only for grsh and gmake(1).

grsh allows to start a task in an already scheduled parallel job. The option —inherit tells grsh to read a job
id from the environment variable JOB_ID and start the specified command as a task in this job. Please note
that in this case, the hostname of the host where the command shall be executed, must precede the
command to execute; the syntax changes to

qrsh -inherit [other options] hostname
command [command_args |

Note also, that in combination with —inherit, most other command line options will be ignored. Only the
options —verbose, —v and =V will be interpreted. As a replacement to option —cwd please use —v PWD.

Usually a task should have the same environment (including the current working directory) as the
corresponding job, so specifying the option —V should be suitable for most applications.

Note — If in your system the commd port is not configured as service, but via environment
variable COMMD_PORT, make sure that this variable is set in the enviroment when calling grsh or
gmake with option —inherit. If you call grsh or gmake with option —inherit from within a job script,
export COMMD_PORT with the submit option or special comment "-v COMMD_PORT".

= yln
Auvailable for gsub and galter only.
Specifies whether or not the standard error stream of the job is merged into the standard output stream.
If both the —j y and the —e options are present, Sun Grid Engine sets, but ignores the error-path attribute.

Qalter allows changing this option even while the job executes. The modified parameter will only be in
effect after a restart or migration of the job, however.

-1 resource=value,...
Available for gsub, grsh, gsh, glogin and galter only.

Launch the job in a Sun Grid Engine queue meeting the given resource request list. In case of galter the
previous definition is replaced by the specified one.

complex(5) describes how a list of available resources and their associated valid value specifiers can be
obtained.

Chapter 4 Reference Manual 317

There may be multiple —1 switches in a single command. You may request multiple —1 options to be soft or
hard both in the same command line. In case of a serial job multiple —1 switches refine the definition for
the sought queue.

Qalter allows changing this option even while the job executes. The modified parameter will only be in
effect after a restart or migration of the job, however.

—m blelalsin,...

Available for gsub, grsh, gsh, qlogin and galter only.

Defines or redefines under which circumstances mail is to be sent to the job owner or to the users defined
with the =M option described below. The option arguments have the following meaning:

‘b’ Mail is sent at the beginning of the job.

‘e’ Mail is sent at the end of the job.

‘a’ Mail is sent when the job is aborted.

‘s’ Mail is sent when the job is suspended.

‘n’ No mail is sent.

Currently no mail is sent when a job is suspended.

For gsh and glogin mail at the beginning or end of the job is suppressed when it is encountered in a default
request file.

Qalter allows changing the b, e, and a option arguments even while the job executes. The modification of
the b option argument will only be in effect after a restart or migration of the job, however.

-M user[@host],...

-m

318

Available for gsub, grsh, gsh, glogin and galter only.

Defines or redefines the list of users to which the server that executes the job has to send mail, if the server
sends mail about the job. Default is the job owner at the originating host.

Qalter allows changing this option even while the job executes.

asterq queue,...

Available for gsub, gsh, qrsh, qlogin and galter. Only meaningful for parallel jobs, i.e. together with the
-pe option.

Defines or redefines a list of queues which may be used to become the so called master queue of this
parallel job. The master queue is defined as the queue where the parallel job is started. The other queues to
which the parallel job spawns tasks are called slave queues. A parallel job only has one master queue.

This parameter has all the properties of a resource request and will be merged with requirements derived
from the —1 option described above.

Qalter allows changing this option even while the job executes. The modified parameter will only be in
effect after a restart or migration of the job, however.

Sun Grid Engine ¢ July 2001

—notify
Available for gsub, grsh, gsh, glogin and galter only.

This flag, when set causes Sun Grid Engine to send “warning” signals to a running job prior to sending the
signals themselves. If a SIGSTOP is pending the job will receive a SIGUSR1 several seconds before the
SIGSTOP. If a SIGKILL is pending the job will receive a SIGUSR2 several seconds before the SIGKILL.
The amount of time delay is controlled by the notify parameter in each queue configuration (see
queue_conf(5)).

Note — The Linux operating system “misuses” the user signals SIGUSR1 and SIGUSR?2 in its
current Posix thread implementation. You might not want to use the —notify option if you are
running threaded applications in your jobs under Linux.

Qalter allows changing this option even while the job executes.
—now y[es]in[o]
Available for gsub, grsh, gsh, glogin and galter only.

—now Yy tries to start the job immediately or not at all. The command returns 0 on success, or 1 on failure
(also if the job could not be scheduled immediately). -now y is default for gsh, glogin and grsh

With option —now n the job will be put into the pending queue, if it cannot be executed immediately.
—now n is default for gsub.

—N name

Available for gsub, grsh, gsh, glogin and galter only.
The name of the job. The name can be any printable set of characters.

If the —N option is not present Sun Grid Engine assigns the name of the job script to the job after any
directory pathname has been removed from the script-name. If the script is read from standard input the
job name defaults to STDIN.

In case of gsh or glogin and if the —N option is absent the string INTERACT" is assigned to the job.
Qalter allows changing this option even while the job executes.

—-nostdin
Available only for grsh.

Suppress the input stream STDIN - grsh will pass the option -n to the rsh(/) command. This is especially
usefull, if multiple tasks are executed in parallel using grsh, e.g. in a make(1) process - it would be
undefined, which process would get the input.

—o [hostname:]path,...
Available for gsub and galter only.

The path used for the standard output stream of the job. The path is handled as described in the —e option
for the standard error stream.

By default the file name for standard output has the form job_name.ojob_id and

Chapter 4 Reference Manual 319

Jjob_name.ojob_id.task_id for job array tasks (see —t option below).

Qalter allows changing this option even while the job executes. The modified parameter will only be in
effect after a restart or migration of the job, however.

—ot override_tickets

Available for galter only. This option is only supported in case of a Sun Grid Engine, Enterprise Edition
system. It is not available for Sun Grid Engine systems.

Changes the number of override tickets for the specified job. Requires manager/operator privileges.
—P project_name

Available for gsub, grsh, gsh, glogin and galter only. This option is only supported in case of a Sun Grid
Engine, Enterprise Edition system. It is not available for Sun Grid Engine systems.

Specifies the project to which this job is assigned. The administrator needs to give permission to individual
users to submit jobs to a specific project. (see —aprj option to gconf(1)).

—p priority
Available for gsub, grsh, gsh, qlogin and qalter only.

Defines or redefines the priority of the job relative to other jobs. Priority is an integer in the range -1023 to
1024. The default priority value for the jobs is 0.

In a Sun Grid Engine system, users may only decrease the priority of their jobs. Sun Grid Engine
managers and administrators may also increase the priority associated with jobs. If a pending job has
higher priority, it is earlier eligible for being dispatched by the Sun Grid Engine scheduler. The job priority
has no effect on running jobs in Sun Grid Engine.

In Sun Grid Engine, Enterprise Edition, the job priority influences the Share Tree Policy and the
Functional Policy. It has no effect on the Deadline and Override Policies (see share_tree(5), sched_conf(5)
and the Sun Grid Engine, Enterprise Edition Installation and Administration Guide for further information
on the resource management policies supported by Sun Grid Engine, Enterprise Edition).

In case of the Share Tree Policy, users can distribute the tickets, to which they are currently entitled,
among their jobs using different priorities assigned via —p. If all jobs have the same priority value, the
tickets are distributed evenly. Jobs receive tickets relative to the different priorities otherwise. Priorities are
treated like an additional level in the share tree in the latter case.

In connection with the Functional Policy, the priority can be used to weight jobs within the functional job
category. Again tickets are distributed relative to any uneven priority distribution treated as a virtual share
distribution level underneath the functional job category.

If both, the Share Tree and the Functional Policy are active, the job priorities will have an effect in both
policies and the tickets independently derived in each of them are added up to the total number of tickets
for each job.

—pe parallel_environment n[-[m]]I[-]m,...
Available for gsub, grsh, gsh, glogin and galter only.

Parallel programming environment (PE) to instantiate. The range descriptor behind the PE name specifies
the number of parallel processes to be run. Sun Grid Engine will allocate the appropriate resources as

320 Sun Grid Engine * July 2001

available. The sge_pe(5) manual page contains information about the definition of PEs and about how to
obtain a list of currently valid PEs.

You can specify the PE name by using the wildcard character “*”, thus the request “pvm*” will match any
parallel environment with a name starting with the string “pvm”.

The range specification is a list of range expressions of the form n-m (n as well as m being positive non-
zero integer numbers), where m is an abbreviation for m-m, -m is a short form for 1-m and n- is an
abbreviation for n-infinity. The range specification is processed as follows: The largest number of queues
requested is checked first. If enough queues meeting the specified attribute list are available, all are
allocated. The next smaller number of queues is checked next and so forth.

If additional —1 options are present, they restrict the set of eligible queues for the parallel job.

Qalter allows changing this option even while the job executes. The modified parameter will only be in
effect after a restart or migration of the job, however.

—q queue,...
Available for gsub, grsh, gsh, qlogin and galter only.

Defines or redefines a list of queues which may be used to execute this job. This parameter has all the
properties of a resource request and will be merged with requirements derived from the -1 option described
above.

Qalter allows changing this option even while the job executes. The modified parameter will only be in
effect after a restart or migration of the job, however.

—qs_args ... -qs_end
Auvailable for gsub and galter only.
Valid with the Queuing System Interface (QSI) option only. Please ask your system administrator.

The options between —qs_args and —qs_end braces are passed from Sun Grid Engine to a foreign queuing
system which interfaced via the Sun Grid Engine QSI facility.

-1 yln
Available for gsub and galter only.

Identifies the ability of a job to be rerun or not. If the value of —r is ’y’, rerun the job if the job was aborted
without leaving a consistent exit state (this is typically the case if the node on which the job is running
crashes). If -t is ’n’, do not rerun the job under any circumstances.

Interactive jobs submitted with gsh or glogin are not re-runable.

Qalter allows changing this option even while the job executes.
—t n[-m[:s]]

Available for gsub and galter only.

Submits a so called Job Array, i.e. an array of identical tasks being only differentiated by an index number
and being treated by Sun Grid Engine almost like a series of jobs. The option argument to —t specifies the
number of job array tasks and the index number which will be associated with the tasks. The index
numbers will be exported to the job tasks via the environment variable COD_TASK_ID.

Chapter 4 Reference Manual 321

—SC

The task id range specified in the option argument may be a single number, a simple range of the form n-m
or a range with a step size. Hence, the task id range specified by 2-10:2 would result in the task id indexes
2,4,6,8,and 10, i.e. in a total of 5 tasks identical tasks with the environment variable COD_TASK_ID
containing one of the 5 index numbers each.

All job array tasks inherit the same resource requests and attribute definitions as specified in the gsub or
qalter command line, except for the —t option. The tasks are scheduled independently and, provided
enough resources, concurrently very much like separate jobs. However, a job array or a sub-array thereof
can be accessed as a total by commands like gmod(1) or gdel(1). See the corresponding manual pages for
further detail.

Job arrays are commonly used to execute the same type of operation on varying input data sets correlated
with the task index number. The number of tasks in a job array is unlimited.

STDOUT and STDERR of job array tasks will be written into different files with the default location
<jobname>.[’e’l’0’]<job_id>".’<task_id>

In order to change this default, the —e and —o options (see above) can be used together with the pseudo
environment variables SHOME, $USER, $JOB_ID, $JOB_NAME, $SHOSTNAME, and
$COD_TASK_ID.

Note = You can use the output redirection to divert the output of all tasks into the same file, but
the result of this is undefined.

variable[=value],...

Available for gsub, grsh, gsh, glogin and galter only.

Sets the given name/value pairs as the job’s context. Value may be omitted. Sun Grid Engine replaces the
job’s previously defined context with the one given as the argument. Multiple —ac, —dc, and —sc options
may be given. The order is important here.

Contexts are a way to dynamically attach and remove meta-information to and from a job. The context
variables are not passed to the job’s execution context in its environment.

Qalter allows changing this option even while the job executes.

—soft

322

Available for gsub, grsh, gsh, glogin and galter only.

Signifies that all resource requirements following in the command line will be soft requirements and are to
be filled on an “as available” basis.

As Sun Grid Engine scans the command line and script file for Sun Grid Engine options and parameters it
builds a list of resources required by a job. All such resource requests are considered as absolutely
essential for the job to commence. If the —soft option is encountered during the scan then all following
resources are designated as “soft requirements” for execution, or “nice-to-have, but not essential”. If the
—hard flag (see above) is encountered at a later stage of the scan, all resource requests following it once
again become “essential”. The —hard and —soft options in effect act as “toggles” during the scan.

Sun Grid Engine ¢ July 2001

—S [host:]pathname,...
Available for gsub, gsh, glogin and galter.

Specifies the interpreting shell for the job. Only one pathname component without a host specifier is
valid and only one path name for a given host is allowed. Shell paths with host assignments define the
interpreting shell for the job if the host is the execution host. The shell path without host specification is
used if the execution host matches none of the hosts in the list.

Furthermore, the pathname can be constructed with pseudo environment variables as described for the —e
option above.

In the case of gsh the specified shell path is used to execute the corresponding command interpreter in the
xterm(1) (via its —e option) started on behalf of the interactive job.

Qalter allows changing this option even while the job executes. The modified parameter will only be in
effect after a restart or migration of the job, however.

—u username,... | -uall

Available for galter only. Changes are only made on those jobs which were submitted by users specified in
the list of usernames. For managers it is possible to use the qalter -uall command to modify all jobs of all
users.

If you use the —u or —uall switch it is not permitted to specify an additional job/task_id_list.

—v variable[=value],...

Available for gsub, grsh, gsh, glogin and galter only.

Defines or redefines the environment variables to be exported to the execution context of the job. If the —v
option is present Sun Grid Engine will add the environment variables defined as arguments to the switch
and, optionally, values of specified variables, to the execution context of the job.

Qalter allows changing this option even while the job executes. The modified parameter will only be in
effect after a restart or migration of the job, however.

—verbose

Available only for grsh and gmake(1).

Unlike gsh and glogin, grsh does not output any informational messages while establishing the session
compliant with the standard rsh(1) and rlogin(1) system calls. If the option -verbose is set, grsh behaves
as verbose as the gsh and glogin commands and outputs informations about the process of establishing the
rsh(1) or rlogin(1) session.

—verify
Available for gsub, grsh, gsh, glogin and galter only.

Does not submit a job but prints information on the job as being represented by the current command-line
and all pertinent external influences.

-V
Available for gsub, grsh, gsh, glogin and galter only.

Specifies that all environment variables active within the gsub utility be exported to the context of the job.

Chapter 4 Reference Manual 323

-w elwinlv

Available for gsub, grsh, gsh, glogin and galter only.

Specifies a validation level applied to the job to be submitted (gsub, glogin, and gsh) or the specified
queued job (galter). The information displayed indicates whether the job possibly can be scheduled
assuming an empty system with no other jobs. Resource requests exceeding the configured maximal
thresholds or requesting unavailable resource attributes are possible causes for jobs to fail this validation.

The specifiers e, w, n and v define the following validation modes:

‘e’ error - jobs with invalid requests will be rejected; the
default for grsh, gsh and glogin.

w’ warning - only a warning will be displayed for invalid
requests.

n none - switches off validation; the default for galter
and gsub.

\ verify - does not submit the job but prints extensive
validation report.

Note — The necessary checks are performance consuming and hence the checking is switched off
by default.

Note — The reasons for job requirements being invalid with respect to resource availability of
queues are displayed in the “-w v” case using the format as described for the gstat(1) -F option
(see description of Full Format in section OUTPUT FORMATS of the gstat(1) manual page.

job/task_id_list
Specified by the following form:
job_id[.task_range][,job_id[.task_range],...]

If present, the fask_range restricts the effect of the operation to the job array task range specified as suffix
to the job id (see the —t option to gsub(1) for further details on job arrays).

The task range specifier has the form n[-m[:s]]. The range may be a single number, a simple range of the
form n-m or a range with a step size.

Instead of job/task_id_list it is possible to use the keyword ’all’ to modify all jobs of the current user.
scriptfile
Available for gsub only.

The job’s scriptfile. If not present or if the operand is the single-character string ’-’, gsub reads the script
from standard input.

324 Sun Grid Engine * July 2001

script_args
Available for gsub and galter only.
Arguments to the job. Not valid if the script is entered from standard input.

Qalter allows changing this option even while the job executes. The modified parameter will only be in
effect after a restart or migration of the job, however.

Xterm_args
Available for gsh only.

Arguments to the xterm(1) executable, as defined in the configuration. For details, refer to sge_conf(5)).

ENVIRONMENTAL VARIABLES

CODINE_ROOT

Specifies the location of the Sun Grid Engine standard configuration files. If not set a default of
/usr/CODINE is used.

COD_CELL

If set, specifies the default Sun Grid Engine cell. To address a Sun Grid Engine cell gsub, gsh, glogin or
qalter use (in the order of precedence):

The name of the cell specified in the environment
variable COD_CELL, if it is set.
The name of the default cell, i.e. default.
COD_DEBUG_LEVEL

If set, specifies that debug information should be written to stderr. In addition the level of detail in which
debug information is generated is defined.

COMMD_PORT

If set, specifies the tcp port on which cod_commad(8) is expected to listen for communication requests.
Most installations will use a services map entry instead to define that port.

COMMD_HOST

If set, specifies the host on which the particular cod_commd(8) to be used for Sun Grid Engine
communication of the gsub, gsh, qlogin or qalter client resides. Per default the local host is used.

In addition to those environment variables specified to be exported to the job via the —v or the —V option (see
above) gsub, gsh, and glogin add the following variables with the indicated values to the variable list:

COD_O_HOME

the home directory of the submitting client.

Chapter 4 Reference Manual 325

COD_O_HOST

the name of the host on which the submitting client is running.
COD_O_LOGNAME

the LOGNAME of the submitting client.
COD_O_MAIL

the MAIL of the submitting client. This is the mail directory of the submitting client.
COD_O_PATH

the executable search path of the submitting client.
COD_O_SHELL

the SHELL of the submitting client.
COD_O_TZ

the time zone of the submitting client.
COD_O_WORKDIR

the absolute path of the current working directory of the submitting client.

Furthermore, Sun Grid Engine sets additional variables into the job’s environment, as listed below.

Note — Several variables (as denoted below) are also set for jobs forwarded to another queuing
system via the Sun Grid Engine Queuing System Interface (the QSI needs to be licensed and installed
as an add-on product — ask your system administrator).

ARC

The Sun Grid Engine architecture name of the node on which the job is running. The name is compiled-in
into the cod_execd(8) binary.

COD_CKPT_ENV

Specifies the checkpointing environment (as selected with the —ckpt option) under which a checkpointing
job executes. Only set for checkpointing jobs.

COD_CKPT_DIR
Only set for checkpointing jobs. Contains path ckpt_dir (see checkpoint(5)) of the checkpoint interface.
COD_STDERR_PATH

the pathname of the file to which the standard error stream of the job is diverted. Commonly used for
enhancing the output with error messages from prolog, epilog, parallel environment start/stop or
checkpointing scripts.

326 Sun Grid Engine * July 2001

COD_STDOUT_PATH

the pathname of the file to which the standard output stream of the job is diverted. Commonly used for
enhancing the output with messages from prolog, epilog, parallel environment start/stop or checkpointing
scripts.

COD_TASK_ID

The index number of the current job array task (see —t option above). This is an unique number in each job
array and can be used to reference different input data records, for example. This environment variable is
not set for non-array jobs.

COD_JOB_SPOOL_DIR

The directory used by cod_shepherd(8) to store job related data during job execution. This directory is
owned by root or by a Sun Grid Engine administrative account and commonly is not open for read or write
access to regular users.

ENVIRONMENT

The ENVIRONMENT variable is set to BATCH to identify that the job is being executed under Sun Grid
Engine control. Also set for QSI jobs.

HOME

The user’s home directory path from the passwd(5) file.
HOSTNAME

The hostname of the node on which the job is running.
JOB_ID

A unique identifier assigned by the cod_gmaster(8) when the job was submitted. The job ID is a decimal
integer in the range 1 to 99999. Also set for QSI jobs.

JOB_NAME

The job name, either INTERACT" for interactive jobs or built from the gsub script filename, a period, and
the digits of the job ID. This default may be overwritten by the -N. option. Also set for QSI jobs.

LAST_HOST

The name of the preceding host in case of migration of a checkpointing job. Also set for QSI jobs.
LOGNAME

The user’s login name from the passwd(5) file.
NHOSTS

The number of hosts in use by a parallel job.

Chapter 4 Reference Manual 327

NQUEUES

The number of queues allocated for the job (always 1 for serial jobs). Also set for QSI jobs.
NSLOTS

The number of queue slots in use by a parallel job.

PATH
A default shell search path of:

/usr/local/bin:/usr/ucb:/bin:/usr/bin
PE

The parallel environment under which the job executes (for parallel jobs only).
PE_HOSTFILE

The path of a file containing the definition of the virtual parallel machine assigned to a parallel job by Sun
Grid Engine. See the description of the $pe_hostfile parameter in sge_pe(5) for details on the format of
this file. The environment variable is only available for parallel jobs.

QUEUE

The name of the queue in which the job is running. Also set for QSI jobs.
REQUEST

Available for batch jobs only.

The request name of a job as specified with the —-N switch (see above) or taken as the name of the job
script file. Also set for QSI jobs.

RESTARTED

This variable is set to 1 if a job was restarted either after a system crash or after a migration in case of a
checkpointing job. The variable has the value 0 otherwise.

SHELL
The user’s login shell from the passwd(5) file.

Note — This is not necessarily the shell in use for the job.

TMPDIR

The absolute path to the job’s temporary working directory.
TMP

The same as TMPDIR; provided for compatibility with NQS.
TZ

The time zone variable imported from cod_execd(8) if set.

328 Sun Grid Engine * July 2001

USER

The user’s login name from the passwd(5) file.

RESTRICTIONS

There is no controlling terminal for batch jobs under Sun Grid Engine and any tests or actions on a controlling
terminal will fail. If these operations are in your .login or .cshrc file, they will possibly cause your job to abort.

Insert the following test before any commands that are not pertinent to batch jobs in your .login:
if ($2JOB_NAME) then
echo "Sun Grid Engine spooled job"
exit 0
endif

Don’t forget to set your shell’s search path in your shell start-up before this code.

EXAMPLES

The following is the simplest form of a Sun Grid Engine script file.

#1/bin/csh
a.out

Chapter 4 Reference Manual 329

The next example is a more complex Sun Grid Engine script.

#l/bin/csh
Force csh
#$ -S /bin/csh

Which account to be charged cpu time

#$ -A santa_claus

date-time to run, format [[CCJyy]MMDDhhmm/[.SS]

#%$ -a 12241200

to run | want 6 or more parallel processes
under the PE pvm. the processes require

128M of memory
#$ -pe pvm 6- -l mem=128

If | run on dec_x put stderr in /tmp/foo, if |
run on sun_y, put stderr in /usr/me/foo
#$ -e dec_x:/tmp/foo,sun_y:/usr/me/foo

Send mail to these users

#$ -M santa @ heaven,claus @ heaven
Mail at beginning/end/on suspension

#$ -m bes

Export these environmental variables
#$ -v PVM_ROOT,FOOBAR=BAR

The job is located in the current

working directory.

#$ -cwd

a.out
FILES
SREQUEST.oJID[.TASKID] STDOUT of job #JID
SREQUEST.eJID[.TASKID] STDERR of job

SREQUEST.poJID[.TASKID]
SREQUEST.peJID[.TASKID]
SREQUEST .hostsJID[.TASKID]
$Sewd/.codine_aliases
Sewd/.cod_request

330 Sun Grid Engine * July 2001

STDOUT of par. env. of job
STDERR of par. env. of job
hosts file of par. env. of job
cwd path aliases

cwd default request

$SHOME/.codine_aliases user path aliases
SHOME/.cod_request user default request
<cod_root>/<cell>/common/.codine_aliases

cluster path aliases
<cod_root>/<cell>/common/.cod_request

cluster default request
<cod_root>/<cell>/common/act_gmaster

Sun Grid Engine master host file

SEE ALSO

sge_intro(1), gconf(1), qdel(1), ghold(1), gmod(1), qrls(1), gstat(1), accounting(5), cod_aliases(5),
sge_conf(5), cod_request(5), sge_pe(5), complex(5).

COPYRIGHT

If configured correspondingly, grsh and glogin contain portions of the rsh, rshd, telnet and telnetd code
copyrighted by The Regents of the University of California. Therefore, the following note applies with respect
to grsh and glogin: This product includes software developed by the University of California, Berkeley and its
contributors.

See sge_intro(1) as well as the information provided in <cod_root>/3rd_party/qrsh and
<cod_root>/3rd_party/qlogin for a statement of further rights and permissions.

Chapter 4 Reference Manual 331

ACCESS_LIST(5)

NAME

access_list — Sun Grid Engine access list file format

DESCRIPTION

Access lists are used in Sun Grid Engine to define access permissions of users to queues (see queue_conf(5))
or parallel environments (see sge_pe(5)). A list of currently configured access lists can be displayed via the
gconf(1) —sul option. The contents of each enlisted access list can shown via the —su switch. The output
follows the access_list format description. New access lists can be created and existing can be modified via
the —au and —du options to gconf{1).

FORMAT

Each user or UNIX user group appears in a single lines. Only symbolic names are allowed. A group is
differentiated from a user name by prefixing the group name with a’ @’ sign.

SEE ALSO

sge_intro(1), qconf(1), sge_pe(5), queue_conf(5).

COPYRIGHT

See sge_intro(1) for a full statement of rights and permissions.

332 Sun Grid Engine * July 2001

ACCOUNTING(5)

NAME

accounting — Sun Grid Engine accounting file format

DESCRIPTION

An accounting record is written to the Sun Grid Engine accounting file for each job having finished. The
accounting file is processed by gacct(1) to derive accounting statistics.

FORMAT

Each job is represented by a line in the accounting file. Empty lines and lines which contain one character or
less are ignored. Accounting record entries are separated by colon (’:”) signs. The entries denote in their order
of appearance:

gname
Name of the queue in which the job has run.
hostname
Name of the execution host.
group
The effective group id of the job owner when executing the job.
owner
Owner of the Sun Grid Engine job.
job_name
Job name.
job_number
Job identifier - job number.
account
An account string as specified by the gsub(1) or galter(1) —A option.
priority

Priority value assigned to the job corresponding to the priority parameter in the queue configuration (see
queue_conf(5)).

Chapter 4 Reference Manual 333

submission_time

Submission time in seconds (since epoch format).
start_time

Start time in seconds (since epoch format).
end_time

End time in seconds (since epoch format).

failed

Indicates the problem which occurred in case a job could not be started on the execution host (e.g. because
the owner of the job did not have a valid account on that machine). If Sun Grid Engine tries to start a job
multiple times, this may lead to multiple entries in the accounting file corresponding to the same job ID.

exit_status

Exit status of the job script (or Sun Grid Engine specific status in case of certain error conditions).
ru_wallclock

Difference between end_time and start_time (see above).

The remainder of the accounting entries follows the contents of the standard UNIX rusage structure as
described in getrusage(2). The following entries are provided:

ru_utime
ru_stime
ru_maxrss
ru_ixrss
ru_ismrss
ru_idrss
ru_isrss
ru_minflt
ru_majflt
ru_nswap
ru_inblock
ru_oublock
ru_msgsnd
ru_msgrev
ru_nsignals
Tru_nvcsw

ru_nivcsw

334 Sun Grid Engine * July 2001

project

The project which was assigned to the job. Projects are only supported in case of a Sun Grid Engine,
Enterprise Edition system.
department

The department which was assigned to the job. Departments are only supported in case of a Sun Grid
Engine, Enterprise Edition system.

granted_pe
The parallel environment which was selected for that job.
slots
The number of slots which were dispatched to the job by the scheduler.
task_number
Job array task index number.
cpu
The cpu time usage in seconds. Only supported in case of a Sun Grid Engine, Enterprise Edition system.

mem

The integral memory usage in Gbytes seconds. Only supported in case of a Sun Grid Engine, Enterprise
Edition system.

io
The amount of data transferred in input/output operations. Only supported in case of a Sun Grid Engine,
Enterprise Edition system.

SEE ALSO

sge_intro(1), qacct(1), qalter(1), gsub(1), getrusage(2), queue_conf(5).

COPYRIGHT

See sge_intro(1) for a full statement of rights and permissions.

Chapter 4 Reference Manual 335

CALENDAR_CONF(5)

NAME

calendar_conf — Sun Grid Engine calendar configuration file format

DESCRIPTION

calendar_conf reflects the format of the Sun Grid Engine calendar configuration. The definition of calendars
is used to specify “on duty” and “off duty” time periods for Sun Grid Engine queues on a time of day, day of
week or day of year basis. Various calendars can be implemented and the appropriate calendar definition for a
certain class of jobs can be attached to a queue.

calendar_conf entries can be added, modified and displayed with the —Acal, —acal, -Mcal, -mcal, —scal and
—scall options to gconf(1) or with the calendar configuration dialog of the graphical user interface gmon(1).
The format of the calendar configuration entries is defined as follows:

FORMAT

calendar_name

The name of the calendar to be used when attaching it to queues or when
administering the calendar definition.

year

The queue status definition on a day of the year basis. This field generally will
specify on which days of a year (and optionally at which times on those days) a
queue, to which the calendar is attached, will change to a certain state. The syntax
of the year field is defined as follows:

year:=
{year_day_range_list=daytime_range_list|[=state]
| [year_day_range_list=]daytime_range_list[=state]
| [year_day_range_list=][daytime_range_list=]state} ...
Where

» at least one of year_day_range_list, daytime_range_list and state always have
to be present,

336 Sun Grid Engine * July 2001

= every day in the year is assumed if year_day_range_list is omitted,
= all day long is assumed if daytime_range_list is omitted,
» switching the queue to “off” (i.e. disabling it) is assumed if state is omitted,

= the queue is assumed to be enabled for days neither referenced implicitly (by
omitting the year_day_range_list) nor explicitly

and the syntactical components are defined as follows:
year_day_range_list := {yearday-yearday | yearday},...
daytime_range_list := hour[:minute][:second]-
hour[:minute][:second],...
state := {on | off | suspended}
year_day := month_day.month.year
month_day := {1121...131}
month := {jan|feb|...[dec|112]...112}
year := {1970119711...12037}

week

The queue status definition on a day of the week basis. This field generally will
specify on which days of a week (and optionally at which times on those days)
a queue, to which the calendar is attached, will change to a certain state. The
syntax of the week field is defined as follows:

week:=
{week_day_range_list[=daytime_range_list][=state]
| [week_day_range_list=]daytime_range_list[=state]
| [week_day_range_list=][daytime_range_list=]state] ...
Where

» at least one of week_day_range_list, daytime_range_list and state always
have to be present,

= every day in the week is assumed if week_day_range_list is omitted,

= syntax and semantics of daytime_range_list and state are identical to the
definition given for the year field above,

= the queue is assumed to be enabled for days neither referenced implicitly (by
omitting the week_day_range_list) nor explicitly

and where week_day_range_list is defined as
week_day_range_list := {weekday-weekday | weekday},...

week_day := {mon | tuelwed | thulfrilsat|sun}

Chapter 4 Reference Manual 337

SEMANTICS

Successive entries to the year and week fields (separated by blanks) are combined
in compliance with the following rule:

“off”-areas are overridden by overlapping “on”- and “suspended”-areas.
Hence an entry of the form
week 12-18 tue=13-17=on

means that queues referencing the corresponding calendar are disabled the entire
week with the exception of Tuesday between 13.00-17.00 where the queues are
available.

EXAMPLES

(The following examples are contained in the directory SCODINE_ROOT/util/resources/calendars).

1 Night, weekend and public holiday calendar:
On public holidays “night” queues are explicitly enabled. On working days queues are disabled between 6.00
and 20.00. Saturday and Sunday are implicitly handled as enabled times:

calendar_name night

year 1.1.1999,6.1.1999,28.3.1999,30.3.1999-
31.3.1999,18.5.1999-19.5.1999,3.10.1999,25.12.1999,26.12.1999=0n
week mon-fri=6-20

1 Day calendar:

On public holidays “day”’-queues are disabled. On working days such queues are closed during the night
between 20.00 and 6.00, i.e. the queues are also closed on Monday from 0.00 to 6.00 and on Friday from
20.00 to 24.00. On Saturday and Sunday the queues are disabled.

calendar_name day

year 1.1.1999,6.1.1999,28.3.1999,30.3.1999-
31.3.1999,18.5.1999-19.5.1999,3.10.1999,25.12.1999,26.12.1999
week mon-fri=20-6 sat-sun

338

Sun Grid Engine ¢ July 2001

1 Night, weekend and public holiday calendar with suspension:
Essentially the same scenario as the first example but queues are suspended instead of switching them “off”.

calendar_name night_s

year 1.1.1999,6.1.1999,28.3.1999,30.3.1999-
31.3.1999,18.5.1999-19.5.1999,3.10.1999,25.12.1999,26.12.1999=0n
week mon-fri=6-20=suspended

1 Day calendar with suspension:

Essentially the same scenario as the second example but queues are suspended instead of switching them
“off”.

calendar_name day_s
year 1.1.1999,6.1.1999,28.3.1999,30.3.1999-
31.3.1999,18.5.1999-19.5.1999,3.10.1999,25.12.1999,26.12.1999=suspended
week mon-fri=206=suspended sat-sun=suspended

SEE ALSO

sge_intro(1), qconf(1), queue_conf(5).

COPYRIGHT

See sge_intro(1) for a full statement of rights and permissions.

Chapter 4 Reference Manual 339

CHECKPOINT(5)

NAME

checkpoint — Sun Grid Engine checkpointing environment configuration file format

DESCRIPTION

Checkpointing is a facility to save the complete status of an executing program or job and to restore and restart
from this so called checkpoint at a later point of time if the original program or job was halted, e.g. through a
system crash.

Sun Grid Engine provides various levels of checkpointing support (see sge_ckpt(1)). The checkpointing
environment described here is a means to configure the different types of checkpointing in use for your Sun
Grid Engine cluster or parts thereof. For that purpose you can define the operations which have to be executed
in initiating a checkpoint generation, a migration of a checkpoint to another host or a restart of a checkpointed
application as well as the list of queues which are eligible for a checkpointing method.

Supporting different operating systems may easily force Sun Grid Engine to introduce operating system
dependencies for the configuration of the checkpointing configuration file and updates of the supported
operating system versions may lead to frequently changing implementation details. Please refer to the file
<codine_root>/doc/checkpointing.asc for more information.

Please use the —ackpt, —dckpt, —mckpt or —sckpt options to the gconf{ 1) command to manipulate checkpointing
environments from the command-line or use the corresponding gmon(1) dialogue for X-Windows based
interactive configuration.

FORMAT

The format of a checkpoint file is defined as follows:
ckpt_name

The name of the checkpointing environment. To be used in the gsub(1) —ckpt
switch or for the gconf(1) options mentioned above.

interface

The type of checkpointing to be used. Currently, the following types are valid:
hibernator

The Hibernator kernel level checkpointing is interfaced.

340 Sun Grid Engine ¢ July 2001

cpr

The SGI kernel level checkpointing is used.
cray-ckpt

The Cray kernel level checkpointing is assumed.
transparent

Sun Grid Engine assumes that the jobs submitted with reference to this
checkpointing interface use a checkpointing library such as provided by the
public domain package Condor.

userdefined

Sun Grid Engine assumes that the jobs submitted with reference to this
checkpointing interface perform their private checkpointing method.

application-level

Uses all of the interface commands configured in the checkpointing object like

in the case of one of the kernel level checkpointing interfaces (cpr, cray-ckpt,

etc.) except for the restart_command (see below), which is not used (even if it

is configured) but the job script is invoked in case of a restart instead.
queue_list

A comma separated list of queues to which parallel jobs belonging to this parallel
environment have access to.

ckpt_command

A command-line type command string to be executed by Sun Grid Engine in
order to initiate a checkpoint.

migr_command

A command-line type command string to be executed by Sun Grid Engine during
a migration of a checkpointing job from one host to another.

restart_command

A command-line type command string to be executed by Sun Grid Engine when
restarting a previously checkpointed application.

clean_command

A command-line type command string to be executed by Sun Grid Engine in
order to cleanup after a checkpointed application has finished.

Chapter 4 Reference Manual 341

342

ckpt_dir

A file system location to which checkpoints of potentially considerable size
should be stored.

queue_list

Contains a comma or blank separated list of queue names which are eligible for a
job if the checkpointing environment was specified at the submission of the job.

ckpt_signal

A Unix signal to be sent to a job by Sun Grid Engine to initiate a checkpoint
generation. The value for this field can either be a symbolic name from the list
produced by the -/ option of the kill(1) command or an integer number which
must be a valid signal on the systems used for checkpointing.

when

The points of time when checkpoints are expected to be generated. Valid values
for this parameter are composed by the letters s, m and x and any combinations
thereof without any separating character in between. The same letters are allowed
for the — option of the gsub(1) command which will overwrite the definitions in
the used checkpointing environment. The meaning of the letters is defined as
follows:

S

A job is checkpointed, aborted and if possible migrated if the corresponding
cod_execd(8) is shut down on the job’s machine.

m

Checkpoints are generated periodically at the min_cpu_interval interval defined
by the queue (see queue_conf(5)) in which a job executes.

A job is checkpointed, aborted and if possible migrated as soon as the job gets
suspended (manually as well as automatically).

Sun Grid Engine ¢ July 2001

RESTRICTIONS

Note = The functionality of any checkpointing, migration or restart procedures provided by default
with the Sun Grid Engine distribution as well as the way how they are invoked in the ckpt_command,
migr_command or restart_command parameters of any default checkpointing environments should not
be changed or otherwise the functionality remains the full responsibility of the administrator
configuring the checkpointing environment. Sun Grid Engine will just invoke these procedures and
evaluate their exit status. If the procedures do not perform their tasks properly or are not invoked in
a proper fashion, the checkpointing mechanism may behave unexpectedly, Sun Grid Engine has no
means to detect this.

SEE ALSO

sge_intro(1), sge_ckpt(1), gconf(1), gmod(1), gsub(1), cod_execd(8).

COPYRIGHT

See sge_intro(1) for a full statement of rights and permissions.

Chapter 4 Reference Manual 343

COD_REQUEST(5)

NAME

cod_request — Sun Grid Engine default request definition file format

DESCRIPTION

cod_request reflects the format of the files to define default request profiles. If available, default request files
are read and processed during job submission before any submit options embedded in the job script and before
any options in the gsub(1) or gsh(1) command-line are considered. Thus, the command-line and embedded
script options may overwrite the settings in the default request files (see gsub(1) or gsh(1) for details).

There is a cluster global, a user private and a working directory local default request definition file. The
working directory local default request file has the highest precedence and is followed by the user private and
then the cluster global default request file.

Note = The -clear option to gsub(1) or gsh(1) can be used to discard any previous settings at any time
in a default request file, in the embedded script flags or in a gsub(1) or gsh(1) command-line option.

The format of the default request definition files is:

1 The default request files may contain an arbitrary number of lines. Blank lines and lines with a "# sign in
the first column are skipped.

1 Each line not to be skipped may contain any gsub(1) option as described in the Sun Grid Engine Reference
Manual Reference Manual. More than one option per line is allowed. The batch script file and argument
options to the batch script are not considered as gsub(1) options and thus are not allowed in a default
request file.

EXAMPLES

The following is a simple example of a default request definition file:

Default Requests File

request arch to be sun4 and a CPU-time of 5hr
-l arch=sun4,s_cpu=5:0:0

don'’t restart the job in case of system crashes
-rn

344 Sun Grid Engine * July 2001

Having defined a default request definition file like this and submitting a job as follows:

gsub test.sh

would have precisely the same effect as if the job was submitted with:

sub -l arch=sun4,s_cpu=>5:0:0 -r n test.sh

FILES

<codine_root>/<cell>/common/cod_request

global defaults file
SHOME/.cod_request user private defaults file
Sewd/.cod_request cwd directory defaults file

SEE ALSO

sge_intro(1), gsh(1), gsub(1), Sun Grid Engine Installation and Administration Guide

COPYRIGHT

See sge_intro(1) for a full statement of rights and permissions.

Chapter 4 Reference Manual

345

CODINE_ALIASES(5)

NAME

codine_aliases — Sun Grid Engine path aliases file format

DESCRIPTION

The Sun Grid Engine path aliasing facility provides administrators and users with the means to reflect
complicated and in-homogeneous file system structures in distributed environments (such as user home
directories mounted under different paths on different hosts) and to ensure that Sun Grid Engine is able to
locate the appropriate working directories for executing batch jobs.

There is a system global path aliasing file and a user local file . codine_aliases defines the format of both:

1 Blank lines and lines with a *# sign in the first column are skipped.

1 Each line other than a blank line or a line lead by "#’ has to contain four strings separated by any number
of blanks or tabs.

1 The first string specifies a source-path, the second a submit-host, the third an execution-host and the fourth
the source-path replacement.

1 Both the submit- and the execution-host entries may consist of only a **’ sign which matches any host.

If the -cwd flag (and only if — otherwise the user’s home directory on the execution host is selected to execute

the job) to gsub(1) was specified, the path aliasing mechanism is activated and the files are processed as

follows:

1 After gsub(1) has retrieved the physical current working directory path, the cluster global path aliasing file
is read if present. The user path aliases file is read afterwards as if it were appended to the global file.

1 Lines not to be skipped are read from the top of the file one by one while the translations specified by
those lines are stored if necessary.

A translation is stored only if the submit-host entry matches the host gsub(1) is executed on and if the
source-path forms the initial part either of the current working directory or of the source-path replace-
ments already stored.

d As soon as both files are read the stored path aliasing information is passed along with the submitted job.
[On the execution host, the aliasing information will be evaluated. The leading part of the current working
directory will be replaced by the source-path replacement if the execution-host entry of the path alias

matches the executing host.

Note = The current working directory string will be changed in this case and subsequent path
aliases must match the replaced working directory path to be applied.

346 Sun Grid Engine ¢ July 2001

EXAMPLES

The following is a simple example of a path aliasing file resolving problems with in-homogeneous paths if
automount(8) is used:

Path Aliasing File
src-path sub-host exec-host replacement
/tmp_mnt/ * * /

replaces any occurrence of /tmp_mnt/ by /
if submitting or executing on any host.

Thus paths on nfs server and clients are the same

FILES

<codine_root>/<cell>/common/codine_aliases
global aliases file
$SHOME/.codine_aliases user local aliases file

SEE ALSO

sge_intro(1), gsub(1), Sun Grid Engine Installation and Administration Guide

COPYRIGHT

See sge_intro(1) for a full statement of rights and permissions.

Chapter 4 Reference Manual 347

SGE_CONF(5)

NAME

sge_conf — Sun Grid Engine configuration files

DESCRIPTION

sge_conf defines the global and local Sun Grid Engine configurations and can be shown/modified by gconf{1)
using the —sconf/-mconf options. Only root or the cluster administrator may modify sge_con.

At its initial start-up, cod_gmaster(8) checks to see if a valid Sun Grid Engine configuration is available at a
well known location in the Sun Grid Engine internal directory hierarchy. If so, it loads that configuration
information and proceeds. If not, cod_gmaster(8) writes a generic configuration containing default values to
that same location. The Sun Grid Engine execution daemons cod_execd(8) upon start-up retrieve their
configuration from cod_gmaster(8).

The actual configuration for both cod_gmaster(8) and cod_execd(8) is a superposition of a so called global
configuration and a local configuration being pertinent for the host on which a master or execution daemon
resides. If a local configuration is available, its entries overwrite the corresponding entries of the global
configuration.

Note — The local configuration does not have to contain all valid configuration entries, but only
those which need to be modified against the global entries.

FORMAT

The paragraphs that follow provide brief descriptions of the individual parameters that compose the global
and local configurations for a Sun Grid Engine cluster:

qmaster_spool_dir

The location where the master spool directory resides. Only the cod_gmaster(8)
needs to have access to this directory. It needs read /write permission for root,
however. The master spool directory — in particular the jobs directory and the
message log file — may become quite large depending on the size of the cluster
and the number of jobs. Be sure to allocate enough disk space and regularly clean
off the log files, e.g. via a cron(8) job.

348 Sun Grid Engine ¢ July 2001

Changing the master spool directory will have an effect after restarting
cod_gmaster(8) only.

The default location for the master spool directory is
<codine_root>/<cell>/spool/qmaster.

This value is a global configuration parameter only. It cannot be overwritten by
the execution host local configuration.

execd_spool_dir

The execution daemon spool directory path. Again, a feasible spool directory
requires read/write access permission for root. The entry in the global
configuration for this parameter can be overwritten by execution host local
configurations, i.e. each cod_execd(§) may have a private spool directory with a
different path, in which case it needs to provide read/write permission for the
root account of the corresponding execution host only.

Under execd_spool_dir a directory named corresponding to the unqualified
hostname of the execution host is opened and contains all information spooled to
disk. Thus, it is possible for the execd_spool_dirs of all execution hosts to
physically reference the same directory path (the root access restrictions
mentioned above need to be met, however).

Changing the execution daemon spool directory will have an effect after
restarting cod_execd(8) only.

The default location for the execution daemon spool directory is
<codine_root>/<cell>/spool.

The global configuration entry for this value may be overwritten by the execution
host local configuration.

qsi_common_dir

The QSI configuration directory path. This directory requires read access
permission for root on all hosts running cod_gstd(8). Each cod_gstd(8) may have a
private spool directory with a different path, in which case it needs to provide
read permission for the root account of the corresponding execution host only.

Changing the QSI common directory will have immediate effect for cod_gstd(8).

The default location for the QSI common directory is
<codine_root>/<cell>/common/qsi.

The global configuration entry for this value may be overwritten by the execution
host local configuration.

Chapter 4 Reference Manual 349

350

binary_path

mailer

xterm

The directory path where the Sun Grid Engine binaries reside. It is used within
Sun Grid Engine components to locate and startup other Sun Grid Engine
programs.

The path name given here is searched for binaries as well as any directory below
with a directory name equal to the current operating system architecture.
Therefore, /usr/CODINE/bin will work for all architectures, if the corresponding
binaries are located in subdirectories named aix43, cray, glinux, hp10, irix6, osf4,
solaris, etc.

Each cod_execd(8) may have its private binary path. Changing the binary path will
have immediate effect for cod_execd(8).

The default location for the binary path is <codine_root>/bin

The global configuration entry for this value may be overwritten by the execution
host local configuration.

mailer is the absolute pathname to the electronic mail delivery agent on your
system. It must accept the following syntax:

mailer -s <subject-of-mail-message> <recipient>

Each cod_execd(8) may use a private mail agent. Changing mailer will take
immediate effect.

The default for mailer depends on the operating system of the host on which the
Sun Grid Engine master installation was run. Common values are /bin/mail or
/usr/bin/Mail.

The global configuration entry for this value may be overwritten by the execution
host local configuration.

xterm is the absolute pathname to the X Window System terminal emulator,
xterm(1).

Each cod_execd(8) may use a private mail agent. Changing xterm will take
immediate effect.

The default for xterm is /usr/bin/X11/xterm.

The global configuration entry for this value may be overwritten by the execution
host local configuration.

Sun Grid Engine ¢ July 2001

load_sensor

prolog

A comma separated list of executable shell script paths or programs to be started
by cod_execd(8) and to be used in order to retrieve site configurable load
information (e.g. free space on a certain disk partition).

Each cod_execd(8) may use a set of private load_sensor programs or scripts.
Changing load_sensor will take effect after two load report intervalls (see
load_report_time).

The global configuration entry for this value may be over-written by the
execution host local configuration.

In addition to the load sensors configured via load_sensor, cod_execd(8) searches
for an executable file named gloadsensor in the execution host's Sun Grid
Engine binary directory path. If such a file is found, it is treated like the
configurable load sensors defined in load_sensor. This facility is intended for
pre-installing a default load sensor.

The executable path of a shell script that is started before execution of Sun Grid
Engine jobs with the same environment setting as that for the Sun Grid Engine
jobs to be started afterwards. An optional prefix “user@” specifies the user under
which this procedure is to be started. This procedure is intended as a means for
the Sun Grid Engine administrator to automate the execution of general site
specific tasks like the preparation of temporary file systems with the need for the
same context information as the job. Each cod_execd(8) may use a private prologue
script. Correspondingly, the execution host local configurations is can be
overwritten by the queue configuration (see queue_conf(5)). Changing prolog will
take immediate effect.

Note — prolog is executed exactly as the job script. Therefore, all implications
described under the parameters shell_start_mode and login_shells below apply.

The default for prolog is the special value NONE, which prevents from execution
of a prologue script.

The following special variables being expanded at runtime can be used (besides
any other strings which have to be interpreted by the procedure) to constitute a
command line:

$host
The name of the host on which the prolog or epilog procedures are started.
$job_owner

The user name of the job owner.

Chapter 4 Reference Manual 351

3562

epilog

$job_id

Sun Grid Engine’s unique job identification number.
$job_name

The name of the job.
$processors

The processors string as contained in the queue configuration (see
queue_conf(5)) of the master queue (the queue in which the prolog and epilog
procedures are started).

$queue

The master queue, i.e. the queue in which the prolog and epilog procedures are
started.

The global configuration entry for this value may be overwritten by the execution
host local configuration.

The executable path of a shell script that is started after execution of Sun Grid
Engine jobs with the same environment setting as that for the Sun Grid Engine
jobs that has just completed. An optional prefix “user@” specifies the user under
which this procedure is to be started. This procedure is intended as a means for
the Sun Grid Engine administrator to automate the execution of general site
specific tasks like the cleaning up of temporary file systems with the need for the
same context information as the job. Each cod_execd(8) may use a private epilogue
script. Correspondingly, the execution host local configurations is can be
overwritten by the queue configuration (see queue_conf(5)). Changing epilog will
take immediate effect.

Note — epilog is executed exactly as the job script. Therefore, all implications
described under the parameters shell_start_mode and login_shells below apply.

The default for epilog is the special value NONE, which prevents from execution
of a epilogue script. The same special variables as for prolog can be used to
constitute a command line.

The global configuration entry for this value may be overwritten by the execution
host local configuration.

shell_start_mode

This parameter defines the mechanisms which are used to actually invoke the job
scripts on the execution hosts. The following values are recognized:

Sun Grid Engine ¢ July 2001

unix_behavior

If a user starts a job shell script under UNIX interactively by invoking it just
with the script name the operating system’s executable loader uses the
information provided in a comment such as “#!/bin/csh’ in the first line of the
script to detect which command interpreter to start to interpret the script. This
mechanism is used by Sun Grid Engine when starting jobs if unix_behavior is
defined as shell_start_mode.

posix_compliant

POSIX does not consider first script line comments such a “#!/bin/csh’ as being
significant. The POSIX standard for batch queuing systems (P1003.2d) therefore
requires a compliant queuing system to ignore such lines but to use user
specified or configured default command interpreters instead. Thus, if
shell_start_mode is set to posix_compliant Sun Grid Engine will either use the
command interpreter indicated by the -5 option of the gsub(1) command or the
shell parameter of the queue to be used (see queue_conf(5) for details).

script_from_stdin

Setting the shell_start_mode parameter either to posix_compliant or
unix_behavior requires you to set the umask in use for cod_execd(8) such that
every user has read access to the active_jobs directory in the spool directory of
the corresponding execution daemon. In case you have prolog and epilog
scripts configured, they also need to be readable by any user who may execute
jobs.

If this violates your site’s security policies you may want to set
shell_start_mode to script_from_stdin. This will force Sun Grid Engine to open
the job script as well as the epilogue and prologue scripts for reading into
STDIN as root (if cod_execd(8) was started as root) before changing to the job
owner’s user account. The script is then fed into the STDIN stream of the
command interpreter indicated by the -5 option of the gsub(1) command or the
shell parameter of the queue to be used (see queue_conf(5) for details).

Thus setting shell_start_mode to script_from_stdin also implies posix_compliant
behavior.

Note = Feeding scripts into the STDIN stream of a command interpreter may
cause trouble if commands like rsh(1) are invoked inside a job script as they
also process the STDIN stream of the command interpreter. These problems
can usually be resolved by redirecting the STDIN channel of those commands
to come from /dev/null (e.g. rsh host date < /dev/null).

Note — Any command-line options associated with the job are passed to the
executing shell. The shell will only forward them to the job if they are not
recognized as valid shell options.

Chapter 4 Reference Manual 353

Changes to shell_start_mode will take immediate effect. The default for
shell_start_mode is posix_compliant.

This value is a global configuration parameter only. It cannot be overwritten by
the execution host local configuration.

login_shells

UNIX command interpreters like the Bourne-Shell (see sh(1)) or the C-Shell (see
csh(1)) can be used by Sun Grid Engine to start job scripts. The command
interpreters can either be started as login-shells (i.e. all system and user default
resource files like .login or .profile will be executed when the command
interpreter is started and the environment for the job will be set up as if the user
has just logged in) or just for command execution (i.e. only shell specific resource
files like .cshrc will be executed and a minimal default environment is set up by
Sun Grid Engine — see gsub(1)). The parameter login_shells contains a comma
separated list of the executable names of the command interpreters to be started
as login-shells.

Changes to login_shells will take immediate effect. The default for login_shells is
sh,csh,tcsh, ksh.

This value is a global configuration parameter only. It cannot be overwritten by
the execution host local configuration.

min_uid

min_uid places a lower bound on user IDs that may use the cluster. Users whose
user 1D (as returned by getpwnam(3)) is less than min_uid will not be allowed to
run jobs on the cluster.

Changes to min_uid will take immediate effect. The default for min_uid is 0.

This value is a global configuration parameter only. It cannot be overwritten by
the execution host local configuration.

min_gid

This parameter sets the lower bound on group IDs that may use the cluster. Users
whose default group ID (as returned by getpwnam(3)) is less than min_gid will not
be allowed to run jobs on the cluster.

Changes to min_gid will take immediate effect. The default for min_gid is 0.

This value is a global configuration parameter only. It cannot be overwritten by
the execution host local configuration.

354 Sun Grid Engine * July 2001

user_lists

The user_lists parameter contains a comma separated list of so called user access
lists as described in access_list(5). Each user contained in at least one of the
enlisted access lists has access to the cluster. If the user_lists parameter is set to
NONE (the default) any user has access being not explicitly excluded via the
xuser_lists parameter described below. If a user is contained both in an access list
enlisted in xuser_lists and user_lists the user is denied access to the cluster.

Changes to user_lists will take immediate effect

This value is a global configuration parameter only. It cannot be overwritten by
the execution host local configuration.

xuser_lists

The xuser_lists parameter contains a comma separated list of so called user access
lists as described in access_list(5). Each user contained in at least one of the
enlisted access lists is denied access to the cluster. If the xuser_lists parameter is
set to NONE (the default) any user has access. If a user is contained both in an
access list enlisted in xuser_lists and user_lists (see above) the user is denied
access to the cluster.

Changes to xuser_lists will take immediate effect

This value is a global configuration parameter only. It cannot be overwritten by
the execution host local configuration.

administrator_mail

administrator_mail specifies a comma separated list of the electronic mail
address(es) of the cluster administrator(s) to whom internally-generated problem
reports are sent. The mail address format depends on your electronic mail system
and how it is configured; consult your system’s configuration guide for more
information.

Changing administrator_mail takes immediate effect. The default for
administrator_mail is an empty mail list.

This value is a global configuration parameter only. It cannot be overwritten by
the execution host local configuration.

Chapter 4 Reference Manual 355

356

projects

This parameter is only available for Sun Grid Engine, Enterprise Edition systems.
It is not present in Sun Grid Engine.

The projects list contains all projects which are granted access to Sun Grid
Engine, Enterprise Edition. User belonging to none of these projects cannot use
Sun Grid Engine, Enterprise Edition. If users belong to projects in the projects list
and the xprojects list (see below), they also cannot use the system.

Changing projects takes immediate effect. The default for projects is none.

This value is a global configuration parameter only. It cannot be overwritten by
the execution host local configuration.

xprojects

This parameter is only available for Sun Grid Engine, Enterprise Edition systems.
It is not present in Sun Grid Engine.

The xprojects list contains all projects which are granted access to Sun Grid
Engine, Enterprise Edition. User belonging to one of these projects cannot use Sun
Grid Engine, Enterprise Edition. If users belong to projects in the projects list (see
above) and the xprojects list, they also cannot use the system.

Changing xprojects takes immediate effect. The default for xprojects is none.

This value is a global configuration parameter only. It cannot be overwritten by
the execution host local configuration.

load_report_time

System load is reported periodically by the execution daemons to cod_gmaster(8).
The parameter load_report_time defines the time interval between load reports.

Each cod_execd(8) may use a different load report time. Changing
load_report_time will take immediate effect.

Note = Be careful when modifying load_report_time. Reporting load too
frequently might block cod_gmaster(8) especially if the number of execution hosts
is large. Moreover, since the system load typically increases and decreases
smoothly, frequent load reports hardly offer any benefit.

The default for load_report_time is 40 seconds.

The global configuration entry for this value may be overwritten by the execution
host local configuration.

Sun Grid Engine ¢ July 2001

stat_log_time

Sun Grid Engine periodically logs a snapshot of the status of the queues currently
configured in the cluster to disk. The time interval in seconds between
consecutive snapshots is defined by stat_log_time.

Changing stat_log_time takes immediate effect. The default for stat_log_time is 2
hours 30 minutes.

This value is a global configuration parameter only. It cannot be overwritten by
the execution host local configuration.

max_unheard

If cod_gmaster(8) could not contact or was not contacted by the execution daemon
of a host for max_unheard seconds, all queues residing on that particular host are
set to status unknown. cod_gmaster(8), at least, should be contacted by the
execution daemons in order to get the load reports. Thus, max_unheard should
by greater than the load_report_time (see above).

Changing max_unheard takes immediate effect. The default for max_unheard is 2
minutes 30 seconds.

This value is a global configuration parameter only. It cannot be overwritten by
the execution host local configuration.

loglevel

This parameter specifies the level of detail that Sun Grid Engine components such
as cod_gmaster(8) or cod_execd(8) use to produce informative, warning or error
messages which are logged to the messages files in the master and execution
daemon spool directories (see the description of the qmaster_spool_dir and the
execd_spool_dir parameter above). The following message levels are available:

log_err
All error events being recognized are logged.
log_warning

All error events being recognized and all detected signs of potentially
erroneous behavior are logged.

log_info
All error events being recognized, all detected signs of potentially erroneous
behavior and a variety of informative messages are logged.

Changing loglevel will take immediate effect.
The default for loglevel is log_info.

This value is a global configuration parameter only. It cannot be overwritten by
the execution host local configuration.

Chapter 4 Reference Manual 357

358

enforce_project

This parameter is only available for Sun Grid Engine, Enterprise Edition systems.
It is not present in Sun Grid Engine.

If set to true, users are required to request a project whenever submitting a job.
See the —P option to gsub(1) for details.

Changing enforce_project will take immediate effect. The default for
enforce_project is false.

This value is a global configuration parameter only. It cannot be overwritten by
the execution host local configuration.

set_token_cmd

This parameter is only present if your Sun Grid Engine system is licensed to
support AFS.

Set_token_cmd points to a command which sets and extends AFS tokens for Sun
Grid Engine jobs. In the standard Sun Grid Engine AFS distribution, it is supplied
as a script which expects two command line parameters. It reads the token from
STDIN, extends the token’s expiration time and sets the token:

<set _token_cmd> <user> <token_extend_after_seconds>

As a shell script this command will call the programs:

» SetToken
= forge

which are provided by your distributor as source code. The script looks as
follows:

#l/bin/sh
set_token_cmd
forge -u $1 -t $2 | SetToken

Since it is necessary for forge to read the secret AFS server key, a site might wish
to replace the set_token_cmd script by a command, which connects to a self
written daemon at the AFS server. The token must be forged at the AFS server
and returned to the local machine, where SetToken is executed.

Changing set_token_cmd will take immediate effect. The default for
set_token_cmd is none.

Sun Grid Engine ¢ July 2001

The global configuration entry for this value may be overwritten by the execution
host local configuration.

pag_cmd
This parameter is only present if your Sun Grid Engine system is licensed to

support AFS.

The path to your pagsh is specified via this parameter. The cod_shepherd(8)
process and the job run in a pagsh. Please ask your AFS administrator for details.

Changing pag_cmd will take immediate effect. The default for pag_cmd is none.

The global configuration entry for this value may be overwritten by the execution
host local configuration.

token_extend_time

This parameter is only present if your Sun Grid Engine system is licensed to
support AFS.

the time period for which AFS tokens are periodically extended. Sun Grid Engine
will call the token extension 30 minutes before the tokens expire until jobs have
finished and the corresponding tokens are no longer required.

Changing token_extend_time will take immediate effect. The default for
token_extend_time is 24:0:0, i.e. 24 hours.

The global configuration entry for this value may be overwritten by the execution
host local configuration.

gid_range

This parameter is only available for Sun Grid Engine, Enterprise Edition systems.
It is not present in Sun Grid Engine.

The gid_range is a comma separated list of range expressions of the form n-m (n
as well as m being positive non-zero integer numbers), where m is an
abbreviation for m-m. These numbers are used in cod_execd(8) to identify
processes belonging to the same job.

Each cod_execd(8) may use a separate set up group ids for this purpose. All
number in the group id range have to be unused supplementary group ids on the
system, where the cod_execd(8) is started.

Changing gid_range will take immediate effect. There is no default for gid_range.
The administrator will have to assign a value for gid_range during installation of
Sun Grid Engine, Enterprise Edition.

The global configuration entry for this value may be overwritten by the execution
host local configuration.

Chapter 4 Reference Manual 359

360

gmaster_params

A list of additional parameters can be passed to the Sun Grid Engine qmaster. The
following values are recognized:

ENABLE_FORCED_QDEL

If this parameter is set, non-administrative users can foce deletion of their
own jobs via the -f option of gdel(1). Without this parameter, forced deletion
of jobs is only allowed by the Sun Grid Engine manager or operator.

Note — Forced deletion for jobs is executed differently depending on whether
users are Sun Grid Engine administrators or not. In case of administrative
users, the jobs are removed from the internal database of Sun Grid Engine
immediately. For regular users, the equivalent of a normal gdel(1) is executed
first, and deletion is forced only if the normal cancellation was unsuccessful.

Changing qmaster_params will take immediate effect. The default for
gmaster_params is none.

This value is a global configuration parameter only. It cannot be overwritten
by the execution host local configuration.

FORBID_RESCHEDULE

If this parameter is set, re-queuing of jobs cannot be initiated by the job
script which is under control of the user. Without this parameter jobs
returning the value 99 are rescheduled. This can be used to cause the job to
be restarted at a different machine, for instance if there are not enough
resources on the current one.

Changing qmaster_params will take immediate effect. The default for
gmaster_params is none.

This value is a global configuration parameter only. It cannot be overwritten
by the execution host local configuration.

schedd_params
This is foreseen for passing additional parameters to the Sun Grid Engine
scheduler. The following values are recognized currently:

FLUSH_SUBMIT_SEC, FLUSH_FINISH_SEC

The parameters are provided for tuning the system’s scheduling behavior. By
default, a scheduler run is triggered in the scheduler interval which is defined in
the scheduler configuration sched_conf(5), parameter schedule_interval.

The parameters FLUSH_SUBMIT_SEC/FLUSH_FINISH_SEC define the time gaps
between triggering a scheduler run and the submitting/finishing of a job.

Sun Grid Engine ¢ July 2001

The most immediate scheduler reaction can be activated by setting both values to
0. The default scheduling behavior is enforced by either removing the parameters
or setting them to a value of -1.

Changing schedd_params will take immediate effect. The default for
schedd_params is none.

This value is a global configuration parameter only. It cannot be overwritten by
the execution host local configuration.

execd_params

This is foreseen for passing additional parameters to the Sun Grid Engine
execution daemon. The following values are recognized:

ACCT_RESERVED_USAGE

If this parameter is set to true, for reserved usage is used for the accounting
entries cpu, mem and io instead of the measured usage.

KEEP_ACTIVE

This value should only be set for debugging purposes. If set to true, the
execution daemon will not remove the spool directory maintained by
cod_shepherd(8) for a job.

PTF_MIN_PRIORITY, PTF_MAX_PRIORITY

The parameters are only available in a Sun Grid Engine, Enterprise Edition
system.

The maximum/minumum priority which Sun Grid Engine, Enterprise
Edition will assign to a job. Typically this is a negative/postive value in the
range of -20 (maximum) to 19 (minimum) for systems which allow setting of
priorties with the nice(2) system call. Other systems may provide different
ranges.

The default priority range (varies from system to system) is installed either
by removing the parameters or by setting a value of -999.

See the "messages" file of the execution daemon for the predefined default
value on your hosts. The values are logged during the startup of the
execution daemon.

NOTIFY_KILL

The parameter allows you to change the notification signal for the signal
SIGKILL (see -notify option of gsub(1)). The parameter either accepts signal
names (use the -/ option of kill(1)) or the special value none. If set to none, no
notification signal will be sent. If it is set to TERM, for instance, or another
signal name then this signal will be sent as notification signal.

Chapter 4 Reference Manual 361

362

NOTIFY_SUSP

With this parameter it is possible to modify the notification signal for the
signal SIGSTOP (see -notify parameter of gsub(1)). The parameter either
accepts signal names (use the -/ option of kill(1)) or the special value none. If
set to none, no notification signal will be sent. If it is set to TSTP, for instance,
or another signal name then this signal will be sent as notification signal.

SHARETREE_RESERVED_USAGE

If this parameter is set to true, reserved usage is taken for the Sun Grid
Engine, Enterprise Edition share tree consumption instead of measured
usage.

USE_QSUB_GID

If this parameter is set to true, the primary group id being active when a job
was submitted will be set to become the primary group id for job execution.
If the parameter is not set, the primary group id as defined for the job owner
in the execution host passwd(5) file is used.

Changing execd_params will take immediate effect. The default for
execd_params is none.

The global configuration entry for this value may be overwritten by the execution
host local configuration.

admin_user

Administrative user account used by Sun Grid Engine for all internal file
handling (status spooling, message logging, etc.). Can be used in cases where the
root account does not have the corresponding file access permissions (e.g. on a
shared file system without global root read /write access).

Changing admin_user will take immediate effect, but if access to the Sun Grid
Engine spooling area is interrupted, this will result in unpredictable behavior. The
admin_user parameter has no default value, but instead it is defined during the
master installation procedure.

This value is a global configuration parameter only. It cannot be overwritten by
the execution host local configuration.

finished_jobs

Sun Grid Engine stores a certain number of just finished jobs to provide post
mortem status information. The finished_jobs parameter defines the number of
finished jobs being stored. If this maximum number is reached, the eldest finished
job will be discarded for every now job being added to the finished job list.

Changing finished_jobs will take immediate effect. The default for finished_jobs
is 0.

Sun Grid Engine ¢ July 2001

This value is a global configuration parameter only. It cannot be overwritten by
the execution host local configuration.

qlogin_daemon

This parameter specifies the executable that is to be started on the server side of a
glogin(1) request. Usually this is the fully qualified pathname of the system’s
telnet daemon. If no value is given, a specialized Sun Grid Engine component is
used.

Changing qlogin_daemon will take immediate effect. The default for
qlogin_daemon is none.

The global configuration entry for this value may be overwritten by the execution
host local configuration.

qlogin_command

This is the command to be executed on the client side of a glogin(1) request.
Usually this is the fully qualified pathname of the systems’s telnet client program.
If no value is given, a specialized Sun Grid Engine component is used. It is
automatically started with the target host and port number as parameters.

Changing qlogin_command will take immediate effect. The default for
qlogin_command is none.

The global configuration entry for this value may be overwritten by the execution
host local configuration.

rlogin_daemon

This parameter specifies the executable that is to be started on the server side of a
qrsh(1) request without a command argument to be executed remotely. Usually
this is the fully qualified pathname of the system’s rlogin daemon. If no value is
given, a specialized Sun Grid Engine component is used.

Changing rlogin_daemon will take immediate effect. The default for
rlogin_daemon is none.

The global configuration entry for this value may be overwritten by the execution
host local configuration.

rlogin_command

This is the command to be executed on the client side of a grsh(1) request without
a command argument to be executed remotely. Usually this is the fully qualified
pathname of the systems’s rlogin client program. If no value is given, a
specialized Sun Grid Engine component is used. The command is automatically
started with the target host and port number as parameters like required for

Chapter 4 Reference Manual 363

telnet(1). The Sun Grid Engine rlogin client has been extened to accept and use the
port number argument. You can only use clients, such as ssh, which also
understand this syntax.

Changing rlogin_command will take immediate effect. The default for
rlogin_command is none.

The global configuration entry for this value may be overwritten by the execution
host local configuration.

rsh_daemon

This parameter specifies the executable that is to be started on the server side of a
qrsh(1) request with a command argument to be executed remotely. Usually this is
the fully qualified pathname of the system’s rsh daemon. If no value is given, a
specialized Sun Grid Engine component is used.

Changing rsh_daemon will take immediate effect. The default for rsh_daemon is
none.

The global configuration entry for this value may be overwritten by the execution
host local configuration.

rsh_command

This is the command to be executed on the client side of a grsh(1) request with a
command argument to be executed remotely. Usually this is the fully qualified
pathname of the systems’s rsh client program. If no value is given, a specialized
Sun Grid Engine component is used. The command is automatically started with
the target host and port number as parameters like required for telnet(1) plus the
command with its arguments to be executed remotely. The Sun Grid Engine rsh
client has been extened to accept and use the port number argument. You can
only use clients, such as ssh, which also understand this syntax.

Changing rsh_command will take immediate effect. The default for
rsh_command is none.

The global configuration entry for this value may be overwritten by the execution
host local configuration.

default_domain

Should be set if your hostname resolving yields unqualified hostnames for your
cluster hosts. In that case, the value of default_domain is appended to the
unqualified hostname to define a fully qualified hostname.

Changing default_domain will take immediate effect. The default for
default_domain is "none", in which case it will not be used.

The global configuration entry for this value may be overwritten by the execution
host local configuration.

364 Sun Grid Engine * July 2001

SEE ALSO

sge_intro(1), csh(1), gconf(1), gsub(1), rsh(1), sh(1), getpwnam(3), queue_conf(5), sched_conf(5),
cod_execd(8), cod_gmaster(8), cod_shepherd(8), cron(8), Sun Grid Engine Installation and Administration
Guide.

COPYRIGHT

See sge_intro(1) for a full statement of rights and permissions.

Chapter 4 Reference Manual 365

SGE_H_ALIASES(5)

NAME

sge_h_aliases — Sun Grid Engine host aliases file format

DESCRIPTION

All Sun Grid Engine components use a hostname resolving service provided by cod_commad(5) to identify
hosts via a unique hostname. cod_commd(5) itself references standard UNIX directory services such as DNS,
NIS and /etc/hosts to resolve hostnames. In rare cases these standard services cannot be setup cleanly and Sun
Grid Engine communication daemons running on different hosts are unable to automatically determine a
unique hostname for one or all hosts which can be used on all hosts. In such situations a Sun Grid Engine host
aliases file can be used to provide the communication daemons with a private and consistent hostname
resolution database.

If a host aliases file is used, it must be specified explicitly to cod_commd(8) via the —a command line option.

FORMAT

For each host a single line must be provided with a blank, comma or semicolon separated list of hostname
aliases. The first alias is defined to be the unique hostname which will be used by all Sun Grid Engine
components using the hostname aliasing service of the cod_commd(8).

SEE ALSO

sge_intro(1), cod_commd(§).

COPYRIGHT

See sge_intro(1) for a full statement of rights and permissions.

366 Sun Grid Engine * July 2001

SGE_PE(5)

NAME

sge_pe — Sun Grid Engine parallel environment configuration file format

DESCRIPTION

Parallel environments are parallel programming and runtime environments allowing for the execution of
shared memory or distributed memory parallelized applications. Parallel environments usually require some
kind of setup to be operational before starting parallel applications. Examples for common parallel
environments are shared memory parallel operating systems and the distributed memory environments
Parallel Virtual Machine (PVM) or Message Passing Interface (MPI).

sge_pe allows for the definition of interfaces to arbitrary parallel environments. Once a parallel environment is
defined or modified with the —ap or —mp options to gconf{) the environment can be requested for a job via
the —pe switch to gsub(1) together with a request of a range for the number of parallel process to be allocated
by the job. Additional -1 options may be used to specify the job requirement to further detail.

FORMAT

The format of a sge_pe file is defined as follows:
pe_name
The name of the parallel environment. To be used in the gsub(1) —pe switch.
queue_list

A comma separated list of queues to which parallel jobs belonging to this parallel
environment have access to.

slots

The number of parallel processes being allowed to run in total under the parallel
environment concurrently.

Chapter 4 Reference Manual 367

368

user_lists

A comma separated list of user access list names (see access_list(5)). Each user
contained in at least one of the enlisted access lists has access to the parallel
environment. If the user_lists parameter is set to NONE (the default) any user has
access being not explicitly excluded via the xuser_lists parameter described
below. If a user is contained both in an access list enlisted in xuser_lists and
user_lists the user is denied access to the parallel environment.

xXuser_lists

The xuser_lists parameter contains a comma separated list of so called user access
lists as described in access_list(5). Each user contained in at least one of the
enlisted access lists is not allowed to access the parallel environment. If the
xuser_lists parameter is set to NONE (the default) any user has access. If a user is
contained both in an access list enlisted in xuser_lists and user_lists the user is
denied access to the parallel environment.

start_proc_args

The invocation command line of a start-up procedure for the parallel
environment. The start-up procedure is invoked by cod_shepherd(8) prior to
executing the job script. Its purpose is to setup the parallel environment
correspondingly to its needs. An optional prefix “user@” specifies the user under
which this procedure is to be started. The standard output of the start-up
procedure is redirected to the file REQNAME.poJID in the job’s working directory
(see gsub(1)), with REQNAME being the name of the job as displayed by gstat(1)
and JID being the job’s identification number. Likewise, the standard error output
is redirected to REQNAME.pe]ID

The following special variables being expanded at runtime can be used (besides
any other strings which have to be interpreted by the start and stop procedures)
to constitute a command line:

$pe_hostfile

The pathname of a file containing a detailed description of the layout of the
parallel environment to be setup by the start-up procedure. Each line of the file
refers to a host on which parallel processes are to be run. The first entry of each
line denotes the hostname, the second entry the number of parallel processes to
be run on the host and the third entry a processor range to be used in case of a
multiprocessor machines.

$host
The name of the host on which the start-up or stop procedures are started.
$job_owner

The user name of the job owner.

Sun Grid Engine ¢ July 2001

$job_id

Sun Grid Engine’s unique job identification number.
$job_name

The name of the job.
$pe

The name of the parallel environment in use.
$pe_slots

Number of slots granted for the job.
$processors

The processors string as contained in the queue configuration (see
queue_conf(5)) of the master queue (the queue in which the start-up and stop
procedures are started).

$queue

The master queue, i.e. the queue in which the start-up and stop procedures are
started.

stop_proc_args

The invocation command line of a shutdown procedure for the parallel
environment. The shutdown procedure is invoked by cod_shepherd(8) after the job
script has finished. Its purpose is to stop the parallel environment and to remove
it from all participating systems. An optional prefix “user@” specifies the user
under which this procedure is to be started. The standard output of the stop
procedure is also redirected to the file REQNAME.po]ID in the job’s working
directory (see gsub(1)), with REQNAME being the name of the job as displayed by
gstat(1) and JID being the job’s identification number. Likewise, the standard error
output is redirected to REQNAME.pe/ID

The same special variables as for start_proc_args can be used to constitute a
command line.

signal_proc_args

The invocation command line of a signalling procedure for the parallel
environment. The signalling procedure is invoked by cod_shepherd(8) after
whenever a signal is sent to the parallel job via gmod(1), gdel(1) or in case of a
migration request. Its purpose is to signal all components of the parallel
environment and their associated application processes correspondingly. The
standard output of the signalling procedure is also redirected to the file
REQNAME.po]ID in the job’s working directory (see gsub(1)), with REQNAME

Chapter 4 Reference Manual 369

370

being the name of the job as displayed by gstat(1) and JID being the job’s
identification number. Likewise, the standard error output is redirected to
REQNAME .peJID

The same special variables as for start_proc_args can be used to constitute a
command line.

allocation_rule

The allocation rule is interpreted by cod_schedd(8) and helps the scheduler to
decide how to distribute parallel processes among the available machines. If, for
instance, a parallel environment is built for shared memory applications only, all
parallel processes have to be assigned to a single machine, no matter how much
suitable machines are available. If, however, the parallel environment follows the
distributed memory paradigm, an even distribution of processes among machines
may be favorable.

The current version of the scheduler only understands the following allocation
rules:

<int>:

An integer number fixing the number of processes per host. If the number is 1,
all processes have to reside on different hosts. If the special denominator
$pe_slots is used, the full range of processes as specified with the gsub(1) —pe
switch has to be allocated on a single host (no matter which value belonging to
the range is finally chosen for the job to be allocated).

$fill_up:

Starting from the best suitable host/queue, all available slots are allocated.
Further hosts and queues are “filled up” as long as a job still requires slots for
parallel tasks.

$round_robin:

From all suitable hosts a single slot is allocated until all tasks requested by the
parallel job are dispatched. If more tasks are requested than suitable hosts are
found, allocation starts again from the first host. The allocation scheme walks
through suitable hosts in a best-suitable-first order.

control_slaves

This parameter can be set to TRUE or FALSE (the default). It indicates whether
Sun Grid Engine is the creator of the slave tasks of a parallel application via
cod_execd(8) and cod_shepherd(8) and thus has full control over all processes in a
parallel application, which enables capabilities such as resource limitation and
correct accounting. However, to gain control over the slave tasks of a parallel
application, a sophisticated PE interface is required, which works closely together
with Sun Grid Engine facilities. Such PE interfaces are available through your
local Sun Grid Engine support office.

Please set the control_slaves parameter to false for all other PE interfaces.

Sun Grid Engine ¢ July 2001

job_is_first_task

This parameter is only checked if control_slaves (see above) is set to TRUE and
thus Sun Grid Engine is the creator of the slave tasks of a parallel application via
cod_execd(8) and cod_shepherd(8). In this case, a sophisticated PE interface is
required closely coupling the parallel environment and Sun Grid Engine. The
documentation accompanying such PE interfaces will recommend the setting for
job_is_first_task.

The job_is_first_task parameter can be set to TRUE or FALSE. A value of TRUE
indicates that the Sun Grid Engine job script already contains one of the tasks of
the parallel application, while a value of FALSE indicates that the job script (and
its child processes) is not part of the parallel program.

RESTRICTIONS

Note = The functionality of the start-up, shutdown and signalling procedures remains the full
responsibility of the administrator configuring the parallel environment. Sun Grid Engine will just
invoke these procedures and evaluate their exit status. If the procedures do not perform their tasks
properly or if the parallel environment or the parallel application behave unexpectedly, Sun Grid
Engine has no means to detect this.

SEE ALSO

sge_intro(1), qconf(1), gdel(1), gmod(1), qsub(1), access_list(5), cod_qmaster(8), cod_schedd(8),
cod_shepherd(8).

COPYRIGHT

See sge_intro(1) for a full statement of rights and permissions.

Chapter 4 Reference Manual 371

COMPLEX(5)

NAME

complex — Sun Grid Engine complexes configuration file format

DESCRIPTION

Complex reflects the format of the Sun Grid Engine complexes configuration. The definition of complexes
provides all pertinent information concerning the resource attributes a user may request for a Sun Grid Engine
job via the gsub(1) -1 option and for the interpretation of these parameters within the Sun Grid Engine system.

The complexes configuration files should not be accessed directly. In order to add or modify complexes, the
gconf{1) options —Ac, —ac, -Mc and —mc should be used instead. While the —Ac and —-Mc options take a
complex configuration file as an argument, the —ac and —mc options bring up an editor filled in with a template
complex configuration or the configuration of an existing complex.

The Sun Grid Engine complexes object integrates 4 different types of complexes:

The Queue Complex

It is referenced by the special name “queue”.

In its default form it contains a selection of parameters in the queue configuration
as defined in queue_conf(5). The queue configuration parameters being requestable
for a job by the user in principal are:

gname
hostname
priority

notify

calendar
max_migr_time
max_no_migr
min_cpu_interval
tmpdir

seq_no

s_rt

h_rt

372 Sun Grid Engine * July 2001

s_cpu
h_cpu
s_data
h_data
s_stack
h_stack
s_core
h_core
S_rss
h_rss

The queue complex can be extended if further attributes are intended to be
available for each queue. The queue complex defines the characteristics (such as
the data type) of the attributes it contains. A value setting for the queue complex
attributes is defined by the queue configuration for each queue in case of the
standard parameters enlisted above, or by the complex_values entry in the queue
configuration (see queue_conf(5) for details) if a parameter has been added to the
default queue complex. If no definition for the value in the complex_values entry
of the queue configuration is given in the latter case, the value is set as defined by
the value field described below.

The Host Complex

It is referenced by the special name “host” and contains the characteristics
definition of all attributes which are intended to be managed on a host basis. The
standard set of host related attributes consists of two categories, but it may be
enhanced like the queue complex as described above. The first category is built by
several queue configuration attributes which are particularly suitable to be
managed on a host basis. These attributes are:

slots
s_vmem
h_vmem
s_fsize
h_fsize

(please refer to queue_conf(5) for details).

Chapter 4 Reference Manual 373

Note — Defining these attributes in the host complex is no contradiction to having
them also in the queue configuration. It allows maintaining the corresponding
resources on a host level and at the same time on a queue level. Total virtual free
memory (h_vmem) can be managed for a host, for example, and a subset of the
total amount can be associated with a queue on that host.

The second attribute category in the standard host complex are the default load
values Every cod_execd(8) periodically reports load to cod_gmaster(8). The reported
load values are either the standard Sun Grid Engine load values such as the CPU
load average (see uptime(1)) or load values defined by the Sun Grid Engine
administration (see the load_sensor parameter in the cluster configuration
sge_conf(5) and the Sun Grid Engine Installation and Administration Guide for details).
The characteristics definition for the standard load values is part of the default
host complex, while administrator defined load values require extension of the
host complex. Please refer to the file <codine_root>/doc/load_parameters.asc for
detailed information on the standard set of load values.

The host complex commonly is not only extended to include non-standard load
parameters, but also to manage host related resources such as the number of
software licenses being assigned to a host or the available disk space on a host
local filesystem.

A concrete value for a particular host complex attribute is determined by either an
associated queue configuration in the case of the queue configuration derived
attributes, a reported load value or the explicit definition of a value in the
complex_values entry of the corresponding host configuration (see host_conf(5)).
If none of the above is available (e.g. the value is supposed to be a load parameter,
but cod_execd(8) does not report a load value for it), the value field described
below is used.

The Global Complex

It is referenced by the special name “global”.

The entries configured in the global complex refer to cluster wide resource
attributes, such as the number of available “floating” licenses of a particular
software or the free disk space on a network wide available filesystem. Global
resource attributes can also be associated with load reports, if the corresponding
load report contains the “GLOBAL” identifier (see the corresponding section in
the Sun Grid Engine Installation and Administration Guide for details). Global load
values can be reported from any host in the cluster. There are no global load
values reported by Sun Grid Engine by default and hence there is no default
global complex configuration.

Concrete values for global complex attributes are either determined by global
load reports or by explicit definition in the complex_values parameter of the
“global” host configuration (see host_conf(5)). If none of both is present (e.g. a load
value has not yet been reported) the value field described below is used.

374 Sun Grid Engine * July 2001

User Defined Complexes

FORMAT

By setting up user defined complexes the Sun Grid Engine administration has the
ability to extend the set of attributes managed by Sun Grid Engine while
restricting the influence of those attributes to particular queues and/or hosts. A
user complex is just a named collection of attributes and the corresponding
definition as to how these attributes are to be handled by Sun Grid Engine. One
or more of these user defined complexes can be attached to a queue and/ or host
via the complex_list queue and host configuration parameter (see queue_conf(5)
and host_conf(5)). The attributes defined in all assigned complexes become
available to the queue and the host respectively in addition to the default complex
attributes.

Concrete values for user defined complexes have to be set by the complex_values
parameter in the queue and host configuration or otherwise the value field
described below is used.

The principal format of a complex configuration is that of a tabulated list. Each line starting with a #’
character is a comment line. Each line despite comment lines define one element of the complex. A element
definition line consists of the following 6 column entries per line (in the order of appearance):

name

shortcut

type

The name of the complex element to be used to request this attribute for a job in
the gsub(1) -1 option. An attribute name may appear only once across all
complexes, i.e. the complex attribute definition is unique.

A shortcut for name which may also be used to request this attribute for a job in
the gsub(1) -1 option. An attribute shortcut may appear only once across all
complexes, so as to avoid the possibility of ambiguous complex attribute
references.

This setting determines how the corresponding values are to be treated Sun Grid
Engine internally in case of comparisons or in case of load scaling for the load
complex entries:

= With INT only raw integers are allowed.
= With DOUBLE floating point numbers in double precision (decimal and
scientific notation) can be specified.

Chapter 4 Reference Manual 375

376

value

relop

= With TIME time specifiers are allowed. Refer to queue_conf(5) for a format
description.

» With MEMORY memory size specifiers are allowed. Refer to queue_conf(5) for a
format description.

= With BOOL the strings TRUE and FALSE are allowed. When used in a load
formula (refer to sched_conf(5)) TRUE and FALSE get mapped into "1” and "0’

= With STRING all strings are allowed and strcmp(3) is used for comparisons.

= CSTRING is like STRING except comparisons are case insensitive.

= HOST is like CSTRING but the string must be a valid hostname.

The value field is a pre-defined value setting for an attribute, which only has an
effect if it is not overwritten while attempting to determine a concrete value for
the attribute with respect to a queue, a host or the Sun Grid Engine cluster. The
value field can be overwritten by

= the queue configuration values of a referenced queue.

= host specific and cluster related load values.

= explicit specification of a value via the complex_values parameter in the queue
or host configuration (see queue_conf(5) and host_conf(5) for details.

If none of above is applicable, value is set for the attribute.

The relation operator. The relation operator is used when the value requested by
the user for this parameter is compared against the corresponding value
configured for the considered queues. If the result of the comparison is false, the

job cannot run in this queue. Possible relation operators are “==", “<”, “>", “<="
and “>=". The only valid operator for string type attributes is “==".

requestable

The entry can be used in a gsub(1) resource request if this field is set to 'y’ or "yes’.
If set to 'n’ or 'no’ this entry cannot be used by a user in order to request a queue
or a class of queues. If the entry is set to ‘forced” or 't the attribute has to be
requested by a job or it is rejected.

consumable

The consumable parameter can be set to either "yes’ ('y” abbreviated) or no’ ('n’).
It can be set to "yes’ only for numeric attributes (INT, MEMORY, TIME - see type
above). If set to "yes’ the consumption of the corresponding resource can be
managed by Sun Grid Engine internal bookkeeping. In this case Sun Grid Engine
accounts for the consumption of this resource for all running jobs and ensures
that jobs are only dispatched if the Sun Grid Engine internal bookkeeping

Sun Grid Engine ¢ July 2001

default

indicates enough available consumable resources. Consumables are an efficient
means to manage limited resources such a available memory, free space on a file
system, network bandwidth or floating software licenses.

Consumables can be combined with default or user defined load parameters (see
sge_conf(5) and host_conf(5)), i.e. load values can be reported for consumable
attributes or the consumable flag can be set for load attributes. The Sun Grid
Engine consumable resource management takes both the load (measuring
availability of the resource) and the internal bookkeeping into account in this
case, and makes sure that neither of both exceeds a given limit.

To enable consumable resource management the basic availability of a resource
has to be defined. This can be done on a cluster global, per host and per queue
basis while these categories may supersede each other in the given order (i.e. a
host can restrict availability of a cluster resource and a queue can restrict host and
cluster resources). The definition of resource availability is performed with the
complex_values entry in host_conf(5) and queue_conf(5). The complex_values
definition of the “global” host specifies cluster global consumable settings. To
each consumable complex attribute in a complex_values list a value is assigned
which denotes the maximum available amount for that resource. The internal
bookkeeping will subtract from this total the assumed resource consumption by
all running jobs as expressed through the jobs’ resource requests.

Note = Jobs can be forced to request a resource and thus to specify their assumed
consumption via the ‘force” value of the requestable parameter (see above).

Note — A default resource consumption value can be pre-defined by the
administrator for consumable attributes not explicitly requested by the job (see
the default parameter below). This is meaningful only if requesting the attribute is
not enforced as explained above.

See the Sun Grid Engine Installation and Administration Guide for examples on the
usage of the consumable resources facility.

Meaningful only for consumable complex attributes (see consumable parameter
above). Sun Grid Engine assumes the resource amount denoted in the default
parameter implicitly to be consumed by jobs being dispatched to a host or queue
managing the consumable attribute. Jobs explicitly requesting the attribute via the
—I option to gsub(1) override this default value.

Chapter 4 Reference Manual 377

SEE ALSO

sge_intro(1), gconf(1), gsub(1), uptime(1), host_conf(5), queue_conf(5), cod_execd(8), cod_gmaster(8),
cod_schedd(8), Sun Grid Engine Installation and Administration Guide.

COPYRIGHT

See sge_intro(1) for a full statement of rights and permissions.

378 Sun Grid Engine * July 2001

HOST_CONF(5)

NAME

host_conf — Sun Grid Engine execution host configuration file format

DESCRIPTION

Host_confreflects the format of the template file for the execution host configuration. Via the —ae and —-me
options of the gconf{1) command, you can add execution hosts and modify the configuration of any execution
host in the cluster. Default execution host entries are added automatically as soon as a cod_execd(8) registers
to cod_gmaster(8) for the very first time from a certain host. The gconf{ 1) —sel switch can be used to display a
list of execution host being currently configured in your Sun Grid Engine system. Via the —se option you can
print the execution host configuration of a specified host.

The special hostname “global” can be used to define cluster global characteristics.

FORMAT

The format of a host_conf file is defined as follows:
hostname

The name of the execution host.

load_scaling

A comma separated list of scaling values to be applied to each or part of the load values being reported by
the cod_execd(8) on the host and being defined in the cluster global “host” complex (see complex(5)). The
load scaling factors are intended to level hardware or operating system specific differences between
execution hosts. If, for example, the load average value (load_avg in the “host” complex; see also
uptime(1)) of a multiprocessor machine is to be compared with a single processor machine the load as
reported by the single CPU host needs to be weighted up against the multiprocessor load (given the same
CPU hardware) to be comparable. The load scaling factors are integers being multiplied with the reported
load quantities to constitute weighted load values. Thus, following the example given above, the load value
of the single processor machine needs to be multiplied by the number of processors of the single processor
machine to become comparable.

The syntax of a load factor specification is as follows: First the name of the load value (as defined in the
“host” complex) is given and, separated by an equal sign, the load scaling value is provided. No blanks are
allowed in between the load_scaling value string.

The parameter load_scaling is not meaningful for the definition of the “global” host.

Chapter 4 Reference Manual 379

complex_list

The comma separated list of administrator defined complexes (see complex(5) for details) to be associated
with the host. Only complex attributes contained in the enlisted complexes and those from the “global”
and “host” complex, which are implicitly attached to each host, can be used in the complex_values list
below. In case of the “global” host, the “host” complex is not attached and only “global” complex
attributes are allowed per default in the complex_values list of the “global” host.

The default value for this parameter is NONE, i.e. no administrator defined complexes are associated with the
host.

complex_values

complex_values defines quotas for resource attributes managed via this host. Each complex attribute is
followed by an “=" sign and the value specification compliant with the complex attribute type (see
complex(5)). Quota specifications are separated by commas. Only attributes as defined in complex_list
(see above) may be used.

The quotas are related to the resource consumption of all jobs on a host in the case of consumable resources
(see complex(5) for details on consumable resources) or they are interpreted on a per job slot basis in the case
of non-consumable resources. Consumable resource attributes are commonly used to manage free memory,
free disk space or available floating software licenses while non-consumable attributes usually define
distinctive characteristics like type of hardware installed.

For consumable resource attributes an available resource amount is determined by subtracting the current
resource consumption of all running jobs on the host from the quota in the complex_values list. Jobs can only
be dispatched to a host if no resource requests exceed any corresponding resource availability obtained by this
scheme. The quota definition in the complex_values list is automatically replaced by the current load value
reported for this attribute, if load is monitored for this resource and if the reported load value is more stringent
than the quota. This effectively avoids oversubscription of resources.

Note — Load values replacing the quota specifications may have become more stringent because they
have been scaled (see load_scaling above) and/or load adjusted (see sched_conf(5)). The —F option of
gstat(1) and the load display in the gmon(1) queue control dialog (activated by clicking on a queue
icon while the “Shift” key is pressed) provide detailed information on the actual availability of
consumable resources and on the origin of the values taken into account currently.

Note = The resource consumption of running jobs (used for the availability calculation) as well as the
resource requests of the jobs waiting to be dispatched either may be derived from explicit user
requests during job submission (see the —/ option to gsub(1)) or from a “default” value configured for
an attribute by the administrator (see complex(5)). The — option to gstat(1) can be used for retrieving
full detail on the actual resource requests of all jobs in the system.

380 Sun Grid Engine * July 2001

For non-consumable resources Sun Grid Engine simply compares the job’s attribute requests with the
corresponding specification in complex_values taking the relation operator of the complex attribute definition
into account (see complex(5)). If the result of the comparison is “true”, the host is suitable for the job with
respect to the particular attribute. For parallel jobs each job slot to be occupied by a parallel task is meant to
provide the same resource attribute value.

Note = Only numeric complex attributes can be defined as consumable resources and hence non-
numeric attributes are always handled on a per job slot basis.

The default value for this parameter is NONE, i.e. no administrator defined resource attribute quotas are
associated with the host.

load_values

This entry cannot be configured but is only displayed in case of a gconf{1) —se command. All load values
are displayed as reported by the cod_execd(8) on the host. The load values are enlisted in a comma
separated list. Each load value start with its name, followed by an equal sign and the reported value.

Pprocessors

This entry cannot be configured but is only displayed in case of a gconf{1) —se command. Its value is the
number of processors which has been detected by cod_execd(8) on the corresponding host.

usage_scaling

This entry is only present in a Sun Grid Engine, Enterprise Edition system. It is not available in Sun Grid
Engine.

The format is equivalent to load_scaling (see above), the only valid attributes to be scaled however are
cpu for CPU time consumption, mem for Memory consumption aggregated over the life-time of jobs and
io for data transferred via any I/O devices. The default NONE means “no scaling”, i.e. all scaling factors
are 1.

resource_capability_factor

This entry is only present in a Sun Grid Engine, Enterprise Edition system. It is not available in Sun Grid
Engine.

The resource capability factor is used by Sun Grid Engine, Enterprise Edition when assigning jobs to
execution hosts. The resource capability factor tells Sun Grid Engine, Enterprise Edition how the
resources (CPU, memory, I/O, etc.) of one execution host compare to the resources of other execution
hosts. This helps to ensure that a job requiring a large percentage of resources (i.e. lots of tickets) gets
placed on an execution host containing a large percentage of the available resources. The load situation on
the execution hosts is taken into account in addition, to guarantee that the selected host is both powerful
enough and lightly loaded.

For example, you might consider setting your resource capability factors for each execution host based on
the number of CPUs, the speed of the CPUs and the installed main memory:

#_of_CPUs * (MHz/200) + GB_of_memory

Chapter 4 Reference Manual 381

This would give an execution host with 32 200 MHz CPUs and 10 gigabytes of memory a resource
capability factor of 42, while an execution host with 24 200 MHz CPUs and 40 gigabytes of memory
would get a resource capability factor of 64, i.e. memory has a significant impact in this example.

Other factors that you might want to consider in setting the resource capability factor are:

job mix - CPU or memory bound jobs
CPU benchmarks - comparison by CPU vendor
megaflops (MFLOPS) - for number crunching

I/O capabilities - disk/network speed
available disk space - at the execution host

The resource capability factor is stored as a floating point double value. The range of values used is not
important. Sun Grid Engine, Enterprise Edition only looks at the relation between values of different hosts.

SEE ALSO

sge_intro(1), qconf(1), uptime(1), complex(5), cod_execd(8), cod_gmater(8).

COPYRIGHT

See sge_intro(1) for a full statement of rights and permissions.

382 Sun Grid Engine * July 2001

PROJECT(5)

NAME

project — Sun Grid Engine, Enterprise Edition project entry file format

DESCRIPTION

The project object is only available in case of a Sun Grid Engine, Enterprise Edition system. Sun Grid Engine
has no project object.

Jobs can be submitted to projects in Sun Grid Engine, Enterprise Edition and a project can be assigned with a
certain level of importance via the functional or the override policy. This level of importance is then inherited
by the jobs executing under that project.

A list of currently configured projects can be displayed via the gconf{ 1) —sprjl option. The contents of each
enlisted project definition can be shown via the —sprj switch. The output follows the project format
description. New projects can be created and existing can be modified via the —aprj, —-mprj and —dprj options

to gconf(1).

FORMAT

A project definition contains the following parameters:
name
The project name.
oticket
The amount of override tickets currently assigned to the project.
fshare
The current functional share of the project.
facl

A list of user access lists (ACLs - see access_list(5)) referring to those users being allowed to submit jobs
to the project.

fxacl

A list of user access lists (ACLs - see access_list(5)) referring to those users being not allowed to submit
jobs to the project.

Chapter 4 Reference Manual 383

SEE ALSO

sge_intro(1), gconf(1), access_list(5).

COPYRIGHT

See sge_intro(1) for a full statement of rights and permissions.

384 Sun Grid Engine * July 2001

QSI_CONF(5)

NAME

gsi_conf — Sun Grid Engine Queuing System Interface (QSI) configuration file format

DESCRIPTION

gsi_conf defines the format of the QSI configuration file. The file is processed by the Queuing System
Transfer Daemon (see cod_gstd(8)) and must reside in the corresponding spool directory on it’s start-up.

Lines starting with a ’# or a ’;’ character are treated as comment lines. Empty lines are skipped. Osi_conf
requires the following entries to occur in the configuration file (the order of occurrence, however, is arbitrary):

queuing_system
The name of the queuing system to be interfaced by the host on which cod_gstd(8) processes this file. The
name is arbitrary but must be unique.

transfer_queue

Attached Sun Grid Engine queue. Sun Grid Engine jobs being dispatched to this queue are transferred to
the cod_gstd(8) maintaining this QSI configuration file.

submit

The calling sequence of a command procedure to submit a job passed by Sun Grid Engine to the queuing
system to be interfaced. Invoked by cod_gstd(8).

delete_job

The calling sequence of a command procedure to delete a job which has been passed by Sun Grid Engine
to the queuing system to be interfaced. Invoked by cod_gstd(8) upon execution of the Sun Grid Engine
qdel(1) command for that job.

suspend_queue

The calling sequence of a command procedure to suspend a job which has been passed by Sun Grid
Engine to the queuing system to be interfaced. Invoked by cod_gstd(8) upon execution of the -s switch of
the gmod(1) command for the corresponding transfer queue. Currently not implemented.

queuing_system_up

The calling sequence of a command procedure to poll for the foreign queuing system if it is up or not.
Executed repeatedly by cod_gstd(8).

Chapter 4 Reference Manual 385

job_status

The calling sequence of a command procedure to poll for the status of jobs which have been passed by Sun
Grid Engine to the queuing system. Executed repeatedly by cod_gstd(S8).

job_finished

The calling sequence of a command procedure to be executed as soon as cod_gstd(8) recognizes the end of
a job which has been passed by Sun Grid Engine to the queuing system to be interfaced. Usually used to
clean up or save job specific data files.

load_sensor_command

The path to a command which is invoked by cod_gstd(8) periodically to retrieve load values from the
foreign queuing system. The load sensor command is expected to follow the same rules as described for
cod_execd(8) (see section LOAD SENSORS). If the same load parameters occur in both the load sensor
command and the load sensor file (see below), the load sensor command values overwrite the values from
the load sensor file. To be in effect, the reported load parameters need to be defined in the host complex
(see complex(5)).

load_sensor_file

A file which contains fixed load values to reported as the load of the foreign queuing system. Each line of
the file is supposed to contain the name of the load parameter and then the associated value. If the same
load parameters occur in both the load sensor command (see above) and the load sensor file, the load
sensor command values overwrite the values from the load sensor file. To be in effect, the reported load
parameters need to be defined in the host complex (see complex(5)).

RETURN VALUES AND OUTPUT HANDLING

The command procedures specified by the gsi_conf entries are supposed to behave on exit in a very specific
way as defined below:

submit

On success the exit status should be 0 and the job-id should be returned to stdout. On failure the exit status
should be 1 and an error message should be printed on stderr.

delete_job

On success the exit status should be 0. On failure the exit status should be 1 and an error message should
be printed on stderr.

suspend_queue

On success the exit status should be 0. On failure the exit status should be 1 and an error message should
be printed on stderr.

queuing_system_up

If the command succeeds, the exit status should be 0 and either “up” or “down” should be printed on
stdout if the queuing system is in the corresponding state. The exit status should be 1 otherwise.

386 Sun Grid Engine * July 2001

job_status

If the job is running the exit status should be 0 and the job status output should be printed to stdout. If the
command fails, the exit status should be 1 and an error message should be printed on stderr. If the
command succeeds, but the job is not running, the exit status should be 2.

job_finished

On success the exit status should be 0. On failure the exit status should be 1 and an error message should
be printed on stderr.

load_sensor_command

Please refer to the description in section LOAD SENSORS of cod_execd(8).

VARIABLES AVAILABLE IN CALLING SEQUENCES

The gsi_conf format allows for usage of a variety of variables in the calling sequences of the command
procedures. The variables are expanded at runtime. The command procedure must process the variables as
provided by the calling sequence definition and as expanded by cod_gstd(8) at runtime. Since some of the
variables may not get a value after expansion, it is advised to quote such parameters with single quotes to
ensure the number of arguments being passed to the command procedure being constant. You may
alternatively want to add descriptive command line switches before variables in the calling sequence to
simplify parameter parsing in the command procedures.

The following is a list of the available variables, the command procedures they are valid for and some
additional remarks:

$script_file
The job script file. Valid for the submit command procedure.
$script_args

The arguments to the job scripts as provided by the gsub(1) command line. Valid for the submit command
procedure. This variable should be quoted or prefixed with a switch as it may contain arbitrary (also 0)
elements after expansion through cod_gstd($8).

$submitdir

The directory in which gsub(1) was executed (available only if -cwd switch to gsub(1) was present). Valid
for the submit and the job_finished command procedure. This variable should be quoted or prefixed with
a switch as it may be empty after expansion through cod_gstd(8).

$submithost

The host from which the job has been submitted. Valid for the job_finished command procedure.

$owner

The owner who has submitted the job. Valid for the delete_job command procedure.

Chapter 4 Reference Manual 387

$s_flag

The command interpreter (e.g. sh(1), csh(1)) to execute the job script. Valid for the submit command
procedure.

$req_name

The request name of the job as defined by the -N gsub(1) switch. Valid for the submit and job_finished
command procedure.

$std_out

The name of the standard output redirection of the job as specified by the gsub(1) -o switch. This variable
is not set if the switch is omitted and if Sun Grid Engine’s default redirection file naming scheme is in
effect. Valid for the submit and job_finished command procedure.

$std_err

The name of the standard error redirection of the job as specified by the gsub(1) -e switch. This variable is
not set if the switch is omitted and if Sun Grid Engine’s default redirection file naming scheme is in effect.
Valid for the submit and job_finished command procedure.

$std_err_out

The name of the unified standard error/output redirection of the job as specified by the gsub(1) -j y -o
option sequence. This variable is not set if the switch is omitted and if Sun Grid Engine’s default
redirection file naming scheme is in effect. Valid for the submit and job_finished command procedure.

$qsub_args

The arguments to be passed to the queuing system as provided by the -qs_args switch in the gsub(1)
command line. Valid for the submit command procedure. This variable should be quoted or prefixed with
a switch as it may contain arbitrary (also 0) elements after expansion through cod_gstd(§).

$codine_job_id

The job-id as assigned to the job by Sun Grid Engine. Valid for the submit, the delete_job and the
job_finished command procedure.

$jobid
The job-id as assigned to the job by the foreign queuing system. Valid for the job_status command
procedure.

$architecture

The architecture-value of the transfer queue the job was scheduled to. Valid for the submit command
procedure.

$queue_name

The queue name of the transfer queue the job was scheduled to. Valid for the submit command procedure.
$queue_hostname

The hostname of the transfer queue the job was scheduled to. This should be the same as the one
cod_gstd(8) is running on. Valid for the submit command procedure.

388 Sun Grid Engine * July 2001

$at_time

The date and time at which the job is eligible for execution as specified by the gsub(1) -a switch. The
date/time format conforms to the output of the ctime(3) or asctime(3) C-Library function (but does not
contain the usual \n). The variable needs to be quoted, as it contains several space separated elements. If
at-time was not specified this variable is set to the empty string. Valid for the submit command procedure.

$s_cpu

The soft cpu time limit as imposed on the job by the transfer queue the job was scheduled to. Valid for the
submit command procedure.

$h_cpu

The hard cpu time limit as imposed on the job by the transfer queue the job was scheduled to. Valid for the
submit command procedure.

$s_fsize

The soft file size limit as imposed on the job by the transfer queue the job was scheduled to. Valid for the
submit command procedure.

$h_fsize

The hard file size limit as imposed on the job by the transfer queue the job was scheduled to. Valid for the
submit command procedure.

$s_data

The soft data segment size limit as imposed on the job by the transfer queue the job was scheduled to.
Valid for the submit command procedure.

$h_data

The hard data segment size limit as imposed on the job by the transfer queue the job was scheduled to.
Valid for the submit command procedure.

$s_stack

The soft stack segment size limit as imposed on the job by the transfer queue the job was scheduled to.
Valid for the submit command procedure.

$h_stack

The hard stack segment size limit as imposed on the job by the transfer queue the job was scheduled to.
Valid for the submit command procedure.

$s_core

The soft core file size limit as imposed on the job by the transfer queue the job was scheduled to. Valid for
the submit command procedure.

$h_core

The hard core file size limit as imposed on the job by the transfer queue the job was scheduled to. Valid for
the submit command procedure.

Chapter 4 Reference Manual 389

$s_rss

The soft resident set size limit as imposed on the job by the transfer queue the job was scheduled to. Valid
for the submit command procedure.

$h_rss

The soft resident set size limit as imposed on the job by the transfer queue the job was scheduled to. Valid
for the submit command procedure.

RESTRICTIONS

The Sun Grid Engine Queuing System Interface must be licensed separately. Thus, this manual page is only
applicable for installations using this feature.

FILES

<qsi_common_dir>/commands QSI configuration files

SEE ALSO

sge_intro(1), gsub(1), complex(5), cod_execd(8), cod_gstd(8).

COPYRIGHT

See sge_intro(1) for a full statement of rights and permissions.

390 Sun Grid Engine * July 2001

QTASK(5)

NAME

qtask — file format of the qtask file.

DESCRIPTION

A gtask file defines which commands are submitted to Sun Grid Engine for remote execution by gtcsh(1). The
qtask file optionally may contain grsh(l) command-line parameters. These parameters are passed to the
qrsh(1) command being used by gfcsh to submit the commands.

A cluster global gtask file defining cluster wide defaults and a user specific gtask file eventually overriding
and enhancing those definitions are supported. The cluster global file resides at
<cod_root>/<cell/common/qtask, while the user specific file can be found at ~/.qtask. An exclamation mark
preceding command definitions in the cluster global can be used by the administrator to deny overriding of
such commands by users.

FORMAT

The principle format of the grask file is that of a tabulated list. Each line starting with a *#’ character is a
comment line. Each line despite comment lines defines a command to be started remotely.

Definition starts with the command name that must match exactly the name as typed in a gtcsh(1) command-
line. Pathnames are not allowed in gtask files. Hence absolute or relative pathnames in gfcsh(1) command-
lines always lead to local execution even if the commands itself are the same as defined in the gtask files.

The command name can be followed by an arbitrary number of grsh(1) option arguments which are passed on
to grsh(1) by gtcsh(1). An exclamation mark prefixing the command in the cluster global gtask file prevents
overriding by the user supplied grask file.

EXAMPLES

The following gtask file

netscape -l a=solaris64 -v DISPLAY=myhost:0
grep -l h=filesurfer
verilog -l veri_lic=1

Chapter 4 Reference Manual 391

designates the applications netscape, grep and verilog for interactive remote execution through Sun Grid
Engine. Netscape is requested to run only on Solaris64 architectures with the DISPLAY environment variable
set to "'myhost:0’, grep only runs on the host named ’filesurfer’ and verilog requests availability of a verilog
license in order to get executed remotely.

SEE ALSO

sge_intro(1), gtesh(1), qrsh(1).

COPYRIGHT

See sge_intro(1) for a full statement of rights and permissions.

392 Sun Grid Engine * July 2001

QUEUE_CONF(5)

NAME

queue_conf — Sun Grid Engine queue configuration file format

DESCRIPTION

Queue_confreflects the format of the template file for the queue configuration. Via the —aq and —mgq options
of the gconf{1) command, you can add queues and modify the configuration of any queue in the cluster.

The queue_conf parameters take as values strings, integer decimal numbers or boolean, time and memory
specifiers as well as comma separated lists. A time specifier either consists of a positive decimal, hexadecimal
or octal integer constant, in which case the value is interpreted to be in seconds, or is built by 3 decimal integer
numbers separated by colon signs where the first number counts the hours, the second the minutes and the
third the seconds. If a number would be zero it can be left out but the separating colon must remain

(e.g. 1:0:1 = 1::1 means 1 hours and 1 second).

Memory specifiers are positive decimal, hexadecimal or octal integer constants which may be followed by a
multiplier letter. Valid multiplier letters are k, K, m and M, where k means multiply the value by 1000, K
multiply by 1024, m multiply by 1000*1000 and M multiplies by 1024*1024. If no multiplier is present, the
value is just counted in bytes.

FORMAT

The following list of queue_conf parameters specifies the queue_conf content:
gname
The name of the queue on the node (type string; template default: template).
hostname

The fully-qualified host name of the node (type string; template default:
host.dom.dom.dom).

seq_no
With sort_seq_no (see sched_conf(5)) set to TRUE, this parameter specifies this

queue’s position in the scheduling order within the suitable queues for a job to be
dispatched. It thus replaces the order by load policy that would rule otherwise.

Chapter 4 Reference Manual 393

Regardless of the sort_seq_no setting, gstat(1) reports queue information in the
order defined by the value of the seq_no. Set this parameter to a monotonically
increasing sequence. The type is number and the default is 0.

load_thresholds

load_thresholds is a list of load thresholds. Already if one of the thresholds is
exceeded no further jobs will be scheduled to the queues on this node and
gmon(1) will signal an overload condition for this node. Arbitrary load values
being defined in the “host” and “global” complexes (see complex(5) for details)
can be used.

The syntax is that of a comma separated list with each list element consisting of
the name of a load value, an equal sign and the threshold value being intended to
trigger the overload situation (e.g. load.avg=175,users_logged_in=5).

Note — Load values as well as consumable resources may be scaled differently for
different hosts if specified in the corresponding execution host definitions (refer to
host_conf(5) for more information). Load thresholds are compared against the
scaled load and consumable values.

suspend_thresholds

A list of load thresholds with the same semantics as that of the load_thresholds
parameter (see above) except that exceeding one of the denoted thresholds
initiates suspension of one of multiple jobs in the queue. See the nsuspend
parameter below for details on the number of jobs which are suspended.

nsuspend

The number of jobs which are suspended /enabled per time interval if at least one
of the load thresholds in the suspend_thresholds list is exceeded or if no
suspend_threshold is violated anymore respectively. Nsuspend jobs are
suspended in each time interval until no suspend_thresholds are exceeded
anymore or all jobs in the queue are suspended. Jobs are enabled in the
corresponding way if the suspend_thresholds are no longer exceeded. The time
interval in which the suspensions of the jobs occur is defined in suspend_interval
below.

suspend_interval
The time interval in which further nsuspend jobs are suspended if one of the
suspend_thresholds (see above for both) is exceeded by the current load on the

host on which the queue is located. The time interval is also used when enabling
the jobs.

394 Sun Grid Engine * July 2001

migr_load_thresholds

priority

A list of load thresholds with the same semantics as that of the load_thresholds
parameter (see above) except that exceeding one of the denoted thresholds
initiates migration of the jobs from the queue. This parameter has no effect in this
release.

The priority parameter specifies the nice(2) value at which jobs in this queue will
be run. The type is number and the default is zero (which means no nice value is
set explicitly).

max_migr_time

The time reserved for checkpointing jobs to be migrated and aborted.
Checkpointing jobs due to be aborted are first sent a SIGTSTP. Everyone in the
concerned process group may catch this signal and may react appropriately. After
max_migr_time seconds, a SIGKILL is sent and the processes are aborted.

Note = If you set max_migr_time too high a user requesting full interactive usage
may suffer max_migr_time seconds from a still running job. Max_migr_time is of
type time and The default is 0 seconds.

migr_load_thresholds

A list of load thresholds with the same semantics as that of the load_thresholds
parameter (see above) except that exceeding one of the denoted thresholds
initiates migration of checkpointing jobs from the queue. It is recommended to set
the migration load values high enough above the load_thresholds to prevent the
jobs from forcing migrations by their own activity.

max_no_migr

The time a checkpointing job is allowed to spend in non-interruptible sections of
the batch script. Non-interruptible sections are everything outside grestart(1)
commands. If a job exceeds this time limit it is killed and the job owner is
notified. The default for max_no_migr is 2 minutes. It is of type time.

min_cpu_interval

The time between two automatic checkpoints in case of transparently
checkpointing jobs. The maximum of the time requested by the user via gsub(1)
and the time defined by the queue configuration is used as checkpoint interval.

Chapter 4 Reference Manual 395

396

Since checkpoint files may be considerably large and thus writing them to the file
system may become expensive, users and administrators are advised to choose
sufficiently large time intervals. min_cpu_interval is of type time and the default
is 5 minutes (which usually is suitable for test purposes only).

processors

qtype

rerun

A set of processors in case of a multiprocessor execution host can be defined to
which the jobs executing in this queue are bound. The value type of this
parameter is a range description like that of the —pe option of gsub(1)

(e.g. 1-4,8,10) denoting the processor numbers for the processor group to be used.
Obviously the interpretation of these values relies on operating system specifics
and is thus performed inside cod_execd(8) running on the queue host. Therefore,
the parsing of the parameter has to be provided by the execution daemon and the
parameter is only passed through cod_gmaster(8) as a string.

Currently, support is only provided for SGI multiprocessor machines running
IRIX 6.2 and Digital UNIX multiprocessor machines. In the case of Digital UNIX
only one job per processor set is allowed to execute at the same time, i.e. slots (see
above) should be set to 1 for this queue.

The type of queue. Currently one of batch, interactive, parallel or checkpointing or
any combination in a comma separated list. Alternatively, if the Sun Grid Engine
Queuing System Interface (QSI) option is licensed, the type transfer can be
specified to indicate a queue which passes jobs on to a foreign queuing system.

(type string; default: batch).

Defines a default behavior for jobs which are aborted by system crashes or
manual “violent” (via kill(1)) shutdown of the complete Sun Grid Engine system
(including the cod_shepherd(8) of the jobs and their process hierarchy) on the
queue host. As soon as cod_execd(8) is restarted and detects that a job has been
aborted for such reasons it can be restarted if the jobs are restartable. A job may
not be restartable, for example, if it updates databases (first reads then writes to
the same record of a database/file) because the abortion of the job may have left
the database in an inconsistent state. If the owner of a job wants to overrule the
default behavior for the jobs in the queue the —r option of gsub(1) can be used.

The type of this parameter is boolean, thus either TRUE or FALSE can be
specified. The default is FALSE, i.e. do not restart jobs automatically.

Sun Grid Engine ¢ July 2001

slots

tmpdir

shell

The maximum number of concurrently executing jobs allowed in the queue. Type
is number.

The tmpdir parameter specifies the absolute path to the base of the temporary
directory filesystem. When cod_execd(8) launches a job, it creates a uniquely-
named directory in this filesystem for the purpose of holding scratch files during
job execution. At job completion, this directory and its contents are removed
automatically. The environment variables TMPDIR and TMP are set to the path of
each jobs scratch directory (type string; default: /tmp).

If either posix_compliant or script_from_stdin is specified as the shell_start_mode
parameter in sge_conf(5) the shell parameter specifies the executable path of the
command interpreter (e.g. sh(1) or csh(1)) to be used to process the job scripts
executed in the queue. The definition of shell can be overruled by the job owner
via the gsub(1) -S option.

The type of the parameter is string. The default is /bin/csh.

shell_start_mode

This parameter defines the mechanisms which are used to actually invoke the job
scripts on the execution hosts. The following values are recognized:

unix_behavior

If a user starts a job shell script under UNIX interactively by invoking it just
with the script name the operating system’s executable loader uses the
information provided in a comment such as “#!/bin/csh’ in the first line of the
script to detect which command interpreter to start to interpret the script. This
mechanism is used by Sun Grid Engine when starting jobs if unix_behavior is
defined as shell_start_mode.

posix_compliant

POSIX does not consider first script line comments such a “#!/bin/csh’ as being
significant. The POSIX standard for batch queuing systems (P1003.2d) therefore
requires a compliant queuing system to ignore such lines but to use user
specified or configured default command interpreters instead. Thus, if
shell_start_mode is set to posix_compliant Sun Grid Engine will either use the
command interpreter indicated by the -5 option of the gsub(1) command or the
shell parameter of the queue to be used (see above).

Chapter 4 Reference Manual 397

398

script_from_stdin

Setting the shell_start_mode parameter either to posix_compliant or
unix_behavior requires you to set the umask in use for cod_execd(8) such that
every user has read access to the active_jobs directory in the spool directory of
the corresponding execution daemon. In case you have prolog and epilog
scripts configured, they also need to be readable by any user who may execute
jobs.

If this violates your site’s security policies you may want to set
shell_start_mode to script_from_stdin. This will force Sun Grid Engine to open
the job script as well as the epilogue and prologue scripts for reading into
STDIN as root (if cod_execd(8) was started as root) before changing to the job
owner’s user account. The script is then fed into the STDIN stream of the
command interpreter indicated by the -5 option of the gsub(1) command or the
shell parameter of the queue to be used (see above).

Thus setting shell_start_mode to script_from_stdin also implies posix_compliant
behavior.

Note = Feeding scripts into the STDIN stream of a command interpreter may
cause trouble if commands like rsh(1) are invoked inside a job script as they
also process the STDIN stream of the command interpreter. These problems
can usually be resolved by redirecting the STDIN channel of those commands
to come from /dev/null (e.g. rsh host date < /dev/null).

Note — Any command-line options associated with the job are passed to the
executing shell. The shell will only forward them to the job if they are not
recognized as valid shell options.

The default for shell_start_mode is posix_compliant.

klog
The executable path of the klog utility on the queue host. It is used for AFS
reauthentication. The type of the parameter is string; the default is
/usr/local/bin/klog.
Not supported in this release.

prolog

The executable path of a shell script that is started before execution of Sun Grid
Engine jobs with the same environment setting as that for the Sun Grid Engine
jobs to be started afterwards. An optional prefix “user@” specifies the user under
which this procedure is to be started. This procedure is intended as a means for

Sun Grid Engine ¢ July 2001

epilog

the Sun Grid Engine administrator to automate the execution of general site
specific tasks like the preparation of temporary file systems with the need for the
same context information as the job. This queue configuration entry overwrites
cluster global or execution host specific prolog definitions (see sge_conf(5)).

Note — prolog is executed exactly as the job script. Therefore, all implications
described under the parameters shell_start_mode and login_shells below apply.

The default for prolog is the special value NONE, which prevents from execution
of a prologue script. The special variables for constituting a command line are the
same like in prolog definitions of the cluster configuration (see sge_conf(5)).

The executable path of a shell script that is started after execution of Sun Grid
Engine jobs with the same environment setting as that for the Sun Grid Engine
jobs that has just completed. An optional prefix “user@” specifies the user under
which this procedure is to be started. This procedure is intended as a means for
the Sun Grid Engine administrator to automate the execution of general site
specific tasks like the cleaning up of temporary file systems with the need for the
same context information as the job. This queue configuration entry overwrites
cluster global or execution host specific epilog definitions (see sge_conf(5)).

Note — epilog is executed exactly as the job script. Therefore, all implications
described under the parameters shell_start_mode and login_shells below apply.

The default for epilog is the special value NONE, which prevents from execution
of a epilogue script. The special variables for constituting a command line are the
same like in prolog definitions of the cluster configuration (see sge_conf(5)).

starter_method

The executable path given here is intended to be used as a starter facility which is
responsible for starting the job itself.

Not supported in this release.

Chapter 4 Reference Manual 399

400

suspend_method
resume_method

terminate_method

These parameters can be used for overwriting the default method used by Sun

Grid Engine for suspension, release of a suspension and for termination of a job.
Per default, the signals SIGSTOP, SIGCONT and SIGKILL are delivered to the job
to perform these actions. However, for some applications this is not appropriate.

If no executable path is given, Sun Grid Engine takes the specified parameter
entries as the signal to be delivered instead of the default signal. A signal must be
either a positive number or a signal name with “SIG” as prefix and the signal
name as printed by kill -I (e.g. SIGTERM).

If an executable path is given (it must be an absolute path starting with a “/”) then
this command together with its arguments is started by Sun Grid Engine to
perform the appropriate action. The following special variables are expanded at
runtime and can be used (besides any other strings which have to be interpreted
by the procedures) to constitute a command line:

$host

The name of the host on which the procedure is started.
$job_owner

The user name of the job owner.
$job_id

Sun Grid Engine’s unique job identification number.
$job_name

The name of the job.
$queue

The name of the queue.
$job_pid

The pid of the job.

reauth_time

The time gap between consecutive AFS reauthentications. Reauth_time should be
less than the ticket expiration time that is configured for the local AFS installation.
The type of the parameter is time and the default value is 1 hour and 40 minutes,
i.e. 100 minutes.

Not supported in this release.

Sun Grid Engine ¢ July 2001

notify

The time waited between delivery of SIGUSR1/SIGUSR2 notification signals and
suspend/kill signals if job was submitted with the gsub(1) —notify option.

owner_list

The owner_list names the login names (in a comma separated list) of those users
who are authorized to suspend this queue (Sun Grid Engine operators and
managers can suspend queues by default). It is customary to set this field for
queues on interactive workstations where the computing resources are shared
between interactive sessions and Sun Grid Engine jobs, allowing the workstation
owner to have priority access (type string; default: NONE).

user_lists

The user_lists parameter contains a comma separated list of so called user access
lists as described in access_list(5). Each user contained in at least one of the
enlisted access lists has access to the queue. If the user_lists parameter is set to
NONE (the default) any user has access being not explicitly excluded via the
xuser_lists parameter described below. If a user is contained both in an access list
enlisted in xuser_lists and user_lists the user is denied access to the queue.

xuser_lists

The xuser_lists parameter contains a comma separated list of so called user access
lists as described in access_list(5). Each user contained in at least one of the
enlisted access lists is not allowed to access the queue. If the xuser_lists
parameter is set to NONE (the default) any user has access. If a user is contained
both in an access list enlisted in xuser_lists and user_lists the user is denied
access to the queue.

projects

The projects parameter contains a comma separated list of projects that have
access to the queue. Any projects not in this list are denied access to the queue. If
set to NONE (the default), any project has access that is not specifically excluded
via the xprojects parameter described below. If a project is in both the projects
and xprojects parameters, the project is denied access to the queue. This
parameter is only available in a Sun Grid Engine, Enterprise Edition system.

xprojects
The xprojects parameter contains a comma separated list of projects that are

denied access to the queue. If set to NONE (the default), no projects are denied
access other than those denied access based on the projects parameter described

Chapter 4 Reference Manual 401

402

above. If a project is in both the projects and xprojects parameters, the project is
denied access to the queue. This parameter is only available in a Sun Grid Engine,
Enterprise Edition system.

subordinate_list

A list of Sun Grid Engine queues, residing on the same host as the configured
queue, to suspend when a specified count of jobs is running in this queue. The list
specification is the same as that of the load_thresholds parameter above,

e.g. low_pri_q=5,small_q. The numbers denote the job slots of the queue that have
to be filled to trigger the suspension of the subordinated queue. If no value is
assigned a suspension is triggered if all slots of the queue are filled.

On nodes which host more than one queue, you might wish to accord better
service to certain classes of jobs (e.g., queues that are dedicated to parallel
processing might need priority over low priority production queues; default:
NONE).

complex_list

The comma separated list of administrator defined complexes (see complex(5) for
details) to be associated with the queue. Only complex attributes contained in the
enlisted complexes and those from the “global”, “host” and “queue” complex,
which are implicitly attached to each queue, can be used in the complex_values
list below.

The default value for this parameter is NONE, i.e. no administrator defined
complexes are associated with the queue.

complex_values

complex_values defines quotas for resource attributes managed via this queue.
The allowed complex attributes to appear in complex_values are defined by
complex_list (see above). The syntax is the same as for load_thresholds (see
above). The quotas are related to the resource consumption of all jobs in a queue
in the case of consumable resources (see complex(5) for details on consumable
resources) or they are interpreted on a per queue slot (see slots above) basis in the
case of non-consumable resources. Consumable resource attributes are commonly
used to manage free memory, free disk space or available floating software
licenses while non-consumable attributes usually define distinctive characteristics
like type of hardware installed.

For consumable resource attributes an available resource amount is determined
by subtracting the current resource consumption of all running jobs in the queue
from the quota in the complex_values list. Jobs can only be dispatched to a queue
if no resource requests exceed any corresponding resource availability obtained
by this scheme. The quota definition in the complex_values list is automatically

Sun Grid Engine ¢ July 2001

replaced by the current load value reported for this attribute, if load is monitored
for this resource and if the reported load value is more stringent than the quota.
This effectively avoids oversubscription of resources.

Note — Load values replacing the quota specifications may have become more
stringent because they have been scaled (see host_conf(5)) and/or load adjusted
(see sched_conf(5)). The —F option of gstat(1) and the load display in the gmon(1)
queue control dialog (activated by clicking on a queue icon while the “Shift” key
is pressed) provide detailed information on the actual availability of consumable
resources and on the origin of the values taken into account currently.

Note = The resource consumption of running jobs (used for the availability
calculation) as well as the resource requests of the jobs waiting to be dispatched
either may be derived from explicit user requests during job submission (see the
—I option to gsub(1)) or from a “default” value configured for an attribute by the
administrator (see complex(5)). The —r option to gstat(1) can be used for retrieving
full detail on the actual resource requests of all jobs in the system.

For non-consumable resources Sun Grid Engine simply compares the job’s
attribute requests with the corresponding specification in complex_values taking
the relation operator of the complex attribute definition into account (see
complex(5)). If the result of the comparison is “true”, the queue is suitable for the
job with respect to the particular attribute. For parallel jobs each queue slot to be
occupied by a parallel task is meant to provide the same resource attribute value.

Note — Only numeric complex attributes can be defined as consumable resources
and hence non-numeric attributes are always handled on a per queue slot basis.

The default value for this parameter is NONE, i.e. no administrator defined
resource attribute quotas are associated with the queue.

calendar

specifies the calendar to be valid for this queue or contains NONE (the default). A
calendar defines the availability of a queue depending on time of day, week and
year. Please refer to calendar_conf(5) for details on the Sun Grid Engine calendar
facility.

Note — Jobs can request queues with a certain calendar model via a “~I c=
<cal_name>" option to qsub(1).

Chapter 4 Reference Manual 403

initial_state

defines an initial state for the queue either when adding the queue to the system
for the first time or on start-up of the cod_execd(8) on the host on which the queue
resides. Possible values are:

default

The queue is enabled when adding the queue or is reset to the previous status
when cod_execd(8) comes up (this corresponds to the behavior in earlier Sun
Grid Engine releases not supporting initial_state).

enabled

The queue is enabled in either case. This is equivalent to a manual and explicit
"gmod —¢’ command (see gmod(1)).

disabled

The queue is disable in either case. This is equivalent to a manual and explicit
"qgmod —d’ command (see gmod(1)).

fshare
This parameter is only available in a Sun Grid Engine, Enterprise Edition system.
Sun Grid Engine does not support this parameter.
The functional shares of the queue (i.e. job class). Jobs executing in this queue
may get functional tickets derived from the relative importance of the queue if the
functional policy is activated.

oticket

This parameter is only available in a Sun Grid Engine, Enterprise Edition system.
Sun Grid Engine does not support this parameter.

The override tickets of the queue (i.e. job class). Sun Grid Engine, Enterprise
Edition distributes the configured amount of override tickets among all jobs
executing in this queue.

RESOURCE LIMITS

The first two resource limit parameters, s_rt and h_rt, are implemented by Sun Grid Engine. They define the
“real time” or also called “elapsed” or “wall clock” time having passed since the start of the job. If h_rt is
exceeded by a job running in the queue, it is aborted via the SIGKILL signal (see kill(1)). If s_rt is exceeded,
the job is first “warned” via the SIGUSR1 signal (which can be caught by the job) and finally aborted after the
notification time defined in the queue configuration parameter notify (see above) has passed.

404 Sun Grid Engine * July 2001

The resource limit parameters s_cpu and h_cpu are implemented by Sun Grid Engine as a job limit. They
impose a limit on the amount of combined CPU time consumed by all the processes in the job. If h_cpu is
exceeded by a job running in the queue, it is aborted via a SIGKILL signal (see kill(1)). If s_cpu is exceeded,
the job is sent a SIGXCPU signal which can be caught by the job. If you wish to allow a job to be “warned” so
it can exit gracefully before it is killed then you should set the s_cpu limit to a lower value than h_cpu. For
parallel processes, the limit is applied per slot which means that the limit is multiplied by the number of slots
being used by the job before being applied.

The resource limit parameters s_vmem and h_vmem are implemented by Sun Grid Engine as a job limit.
They impose a limit on the amount of combined virtual memory consumed by all the processes in the job. If
h_vmem is exceeded by a job running in the queue, it is aborted via a SIGKILL signal (see kill(1)). If
s_vmem is exceeded, the job is sent a SIGXCPU signal which can be caught by the job. If you wish to allow a
job to be “warned” so it can exit gracefully before it is killed then you should set the s_vmem limit to a lower
value than h_vmem. For parallel processes, the limit is applied per slot which means that the limit is
multiplied by the number of slots being used by the job before being applied.

The remaining parameters in the queue configuration template specify per job soft and hard resource limits as
implemented by the setrlimit(2) system call. See this manual page on your system for more information. By
default, each limit field is set to infinity (which means RLIM_INFINITY as described in the setrlimit(2)
manual page). The value type for the CPU-time limits s_cpu and h_cpu is time. The value type for the other
limits is memory.

Note — Not all systems support setrlimit(2).

Note — s_vmem and h_vmem (virtual memory) are only available on systems supporting
RLIMIT_VMEM (see setrlimit(2) on your operating system).

The UNICOS operating system supplied by SGI/Cray does not support the setrlimit(2) system call, using their
own resource limit-setting system call instead. For UNICOS systems only, the following meanings apply:

s_cpu
The per-process CPU time limit in seconds.
s_core

The per-process maximum core file size in bytes.

s_data

The per-process maximum memory limit in bytes.
S_vmem

The same as s_data (if both are set the minimum is used).
h_cpu

The per-job CPU time limit in seconds.

Chapter 4 Reference Manual 405

h_data

The per-job maximum memory limit in bytes.

h_vmem

The same as h_data (if both are set the minimum is used).
h_fsize

The total number of disk blocks that this job can create.

SEE ALSO

sge_intro(1), csh(1), gconf(1), gmon(1), qrestart(1), gstat(1), gsub(1), sh(1), nice(2), setrlimit(2),
access_list(5), calendar_conf(5), sge_conf(5), complex(5), host_conf(5), sched_conf(5), gsi_conf(5),
cod_execd(8), cod_gmaster(8), cod_qstd(8), cod_shepherd(§).

COPYRIGHT

See sge_intro(1) for a full statement of rights and permissions.

406 Sun Grid Engine * July 2001

SCHED_CONF(5)

NAME

sched_conf — Sun Grid Engine default scheduler configuration file

DESCRIPTION

sched_conf defines the configuration file format for Sun Grid Engine’s default scheduler provided by
cod_schedd(8). In order to modify the configuration, use the graphical user’s interface gmon(1) or the -msconf
option of the gconf(1) command. A default configuration is provided together with the Sun Grid Engine
distribution package.

FORMAT

The following parameters are recognized by the Sun Grid Engine scheduler if present in sched_conf:

algorithm

Allows for the selection of alternative scheduling algorithms.

Currently default is the only allowed setting.

load_formula

A simple algebraic expression used to derive a single weighted load value from
all or part of the load parameters reported by cod_execd(8) for each host and from
all or part of the consumable resources (see complex(5)) being maintained for each
host. The load formula expression syntax is that of a summation weighted load
values, that is:

load_vall[*w1][{+ | -load_val2[*w2][{+ | -}...]]

Note — No blanks are allowed in the load formula.

The load values and consumable resources (load_vall, ...) are specified by the
name defined in the complex (see complex(5)).

Chapter 4 Reference Manual 407

408

Note — Administrator defined load values (see the load_sensor parameter in
sge_conf(5) for details) and consumable resources available for all hosts (see
complex(5)) may be used as well as Sun Grid Engine default load parameters.

The weighting factors (w1, ...) are positive integers. After the expression is
evaluated for each host the results are assigned to the hosts and are used to sort
the hosts corresponding to the weighted load. The sorted host list is used to sort
queues subsequently.

The default load formula is “load_avg”.

job_load_adjustments

The load, which is imposed by the Sun Grid Engine jobs running on a system
varies in time, and often, e.g. for the CPU load, requires some amount of time to
be reported in the appropriate quantity by the operating system. Consequently, if
a job was started very recently, the reported load may not provide a sufficient
representation of the load which is already imposed on that host by the job. The
reported load will adapt to the real load over time, but the period of time, in
which the reported load is too low, may already lead to an oversubscription of
that host. Sun Grid Engine allows the administrator to specify
job_load_adjustments which are used in the Sun Grid Engine scheduler to
compensate for this problem.

The job_load_adjustments are specified as a comma separated list of arbitrary
load parameters or consumable resources and (separated by an equal sign) an
associated load correction value. Whenever a job is dispatched to a host by
cod_schedd(8), the load parameter and consumable value set of that host is
increased by the values provided in the job_load_adjustments list. These
correction values are decayed linearly over time until after
load_adjustment_decay_time from the start the corrections reach the value 0. If
the job_load_adjustments list is assigned the special denominator NONE, no
load corrections are performed.

The adjusted load and consumable values are used to compute the combined and
weighted load of the hosts with the load_formula (see above) and to compare the
load and consumable values against the load threshold lists defined in the queue
configurations (see queue_conf(5)). If your load_formula simply consists of the
CPU load average parameter load_avg and if your jobs are very compute
intensive, you might want to set the job_load_adjustments list to load_avg=100,
which means that every new job dispatched to a host will require 100 % CPU time
and thus the machine’s load is instantly raised by 100.

Sun Grid Engine ¢ July 2001

load_adjustment_decay_time

The load corrections in the “job_load_adjustments” list above are decayed
linearly over time from the point of the job start, where the corresponding load or
consumable parameter is raised by the full correction value, until after a time
period of “load_adjustment_decay_time”, where the correction becomes 0.
Proper values for “load_adjustment_decay_time” greatly depend upon the load
or consumable parameters used and the specific operating system(s). Therefore,
they can only be determined on-site and experimentally. For the default load_avg
load parameter a “]load_adjustment_decay_time” of 7 minutes has proven to
yield reasonable results.

maxujobs

The maximum number of jobs any user may have running in a Sun Grid Engine
cluster at the same time. If set to 0 (default) the users may run an arbitrary
number of jobs. If the user_sort scheduling policy is active (see below) the
scheduler allows at the most maxujobs in each priority group

The maxujobs parameter has no effect in a Sun Grid Engine, Enterprise Edition
system. Sun Grid Engine, Enterprise Edition provides more sophisticated means
to control share entitlement.

maxgjobs
Not implemented yet. Provided for later extension.
schedule_interval

At the time cod_schedd(8) initially registers to cod_qmaster(8) schedule_interval is
used to set the time interval in which cod_gmaster(8) sends scheduling event
updates to cod_schedd(8). A scheduling event is a status change that has occurred
within cod_gmaster(8) which may trigger or affect scheduler decisions (e.g. a job
has finished and thus the allocated resources are available again).

In the Sun Grid Engine default scheduler the arrival of a scheduling event report
triggers a scheduler run. The scheduler waits for event reports otherwise.

Schedule_interval is a time value (see queue_conf(5) for a definition of the syntax
of time values).

user_sort

Sun Grid Engine usually schedules user jobs corresponding to a first-come-first-
served policy. In case a user submits a large amount of jobs in very short time,

this can lead to a rather unfair situation, because all users submitting afterwards
are blocked until most of the first user’s jobs are completed. Therefore, Sun Grid

Chapter 4 Reference Manual 409

Engine allows to change this policy to the so called equal share sort: As soon as a
user has a job running his other jobs are sorted to the end of the pending jobs list.
Thus, the first jobs of all other users have comparable chances to find a queue.

Note — The equal share sort only applies within the same job priority category
(refer to the mp option of the gsub(1) and galter(1) commands for more
information).

The default for user_sort is FALSE.
queue_sort_method

If this parameter is set to seqno, Sun Grid Engine will use the seq_no parameter
as configured in the current queue configurations (see queue_conf(5)) as first
criterion to produce a sorted queue list. The load_formula (see above) has only a
meaning if two queues have equal sequence numbers. If queue_sort_method is
set to load the load according the load_formula is the first criterion and the
sequence number is only used if two hosts have the same load. The sequence
number sorting is most useful if you want to define a fixed order in which queues
are to be filled (e.g. the cheapest resource first).

The default for this parameter is load.
grd_schedule_interval

This parameter is only available in a Sun Grid Engine, Enterprise Edition system.
Sun Grid Engine does not support this parameter.

The time period between job priority adjustments by the Sun Grid Engine,
Enterprise Edition global dynamic scheduler (GDS). Valid values are specified of
type time as specified in queue_conf(5).

halftime

This parameter is only available in a Sun Grid Engine, Enterprise Edition system.
Sun Grid Engine does not support this parameter.

When executing under a share based policy, Sun Grid Engine, Enterprise Edition
“ages” (i.e. decreases) usage to implement a sliding window for achieving the
share entitlements as defined by the share tree. The halftime defines the time
interval in which accumulated usage will have been decayed to half its original
value. Valid values are specified of type time as specified in queue_conf(5).

usage_weight_list

This parameter is only available in a Sun Grid Engine, Enterprise Edition system.
Sun Grid Engine does not support this parameter.

410 Sun Grid Engine * July 2001

Sun Grid Engine, Enterprise Edition accounts for the consumption of the
resources CPU-time, memory and IO to determine the usage which is imposed on
a system by a job. A single usage value is computed from these three input
parameters by multiplying the individual values by weights and adding them up.
The weights are defined in the usage_weight_list. The format of the list is

cpu=wcpu,mem=wmem,io=wio

where wcpu, wmem and wio are the configurable weights. The weights are real
number. The sum of all tree weights should be 1.

compensation_factor

This parameter is only available in a Sun Grid Engine, Enterprise Edition system.
Sun Grid Engine does not support this parameter.

Determines how fast Sun Grid Engine, Enterprise Edition should compensate for
past usage below of above the share entitlement defined in the share tree.
Recommended values are between 2 and 10, where 10 means faster compensation.

weight_user

This parameter is only available in a Sun Grid Engine, Enterprise Edition system.
Sun Grid Engine does not support this parameter.

The relative importance of the user shares in the functional policy. Values are of
type real.

weight_project

This parameter is only available in a Sun Grid Engine, Enterprise Edition system.
Sun Grid Engine does not support this parameter.

The relative importance of the project shares in the functional policy. Values are of
type real.

weight_jobclass

This parameter is only available in a Sun Grid Engine, Enterprise Edition system.
Sun Grid Engine does not support this parameter.

The relative importance of the job class (i.e. queue) shares in the functional policy.
Values are of type real.

weight_department

This parameter is only available in a Sun Grid Engine, Enterprise Edition system.
Sun Grid Engine does not support this parameter.

Chapter 4 Reference Manual 411

412

The relative importance of the department shares in the functional policy. Values
are of type real.

weight_job
This parameter is only available in a Sun Grid Engine, Enterprise Edition system.

Sun Grid Engine does not support this parameter.

The relative importance of the job shares in the functional policy. Values are of
type real.

weight_tickets_functional

This parameter is only available in a Sun Grid Engine, Enterprise Edition system.
Sun Grid Engine does not support this parameter.

The maximum number of functional tickets available for distribution by Sun Grid
Engine, Enterprise Edition. Determines the relative importance of the functional

policy.
weight_tickets_share

This parameter is only available in a Sun Grid Engine, Enterprise Edition system.
Sun Grid Engine does not support this parameter.

The maximum number of share based tickets available for distribution by Sun
Grid Engine, Enterprise Edition. Determines the relative importance of the share
tree policy.

weight_deadline

This parameter is only available in a Sun Grid Engine, Enterprise Edition system.
Sun Grid Engine does not support this parameter.

The maximum number of deadline tickets available for distribution by Sun Grid
Engine, Enterprise Edition. Determines the relative importance of the deadline

policy.
schedd_job_info

The default scheduler can keep track why jobs could not be scheduled during the
last scheduler run. This parameter enables or disables the observation. The value
true enables the monitoring false turns it off.

It is also possible to activate the observation only for certain jobs. This will be
done if the parameter is set to job_list followed by a comma separated list of job
ids.

The user can obtain the collected information with the command gstat j.

Sun Grid Engine ¢ July 2001

FILES

<codine_root>/<cell>/common/sched_configuration
cod_schedd configuration

SEE ALSO

sge_intro(1), galter(1), gconf(1), gstat(1), gsub(1), complex(5), queue_conf(5), cod_execd(8),
cod_gmaster(8), cod_schedd(8), Sun Grid Engine Installation and Administration Guide.

COPYRIGHT

See sge_intro(1) for a full statement of rights and permissions.

Chapter 4 Reference Manual 413

SHARE_TREE(5)

NAME

share_tree — Sun Grid Engine, Enterprise Edition share tree file format

DESCRIPTION

The share tree object is only available in case of a Sun Grid Engine, Enterprise Edition system. Sun Grid
Engine has no share tree object.

The share tree defines the long-term resource entitlements of users/projects and of a hierarchy of arbitrary
groups thereof.

The current share tree can be displayed via the gconf{ 1) —sstree option. The output follows the share_tree
format description. A share tree can be created and an existing can be modified via the —astree and —mstree
options to gconf{1). Individual share tree nodes can be created, modified, deleted, or shown via the —astnode,
—dstnode, -mstnode, and —sstnode options to gconf{1).

FORMAT

The format of a share tree file is defined as follows:

0 A new node starts with the attribute id, and equal sign and the numeric identification number of the node.
Further attributes of that node follow until another id-keyword is encountered.

[The attribute childnodes contains a comma separated list of child nodes to this node.

0 The parameter name refers to an arbitrary name for the node or to a corresponding user (see user(5)) or
project (see project(5)) if the node is a leaf node of the share tree. The name for the root node of the tree is
“Root” by convention.

1 The parameter shares defines the share of the node among the nodes with the same parent node.

SEE ALSO

sge_intro(1), gconf(1), project(5), user(5).

COPYRIGHT

See sge_intro(1) for a full statement of rights and permissions.

414 Sun Grid Engine * July 2001

USER(5)

NAME

user — Sun Grid Engine, Enterprise Edition user entry file format

DESCRIPTION

The user object is only available in case of a Sun Grid Engine, Enterprise Edition system. Sun Grid Engine
has no user object.

A user entry is used in Sun Grid Engine, Enterprise Edition to store ticket and usage information on a per user
basis. Maintaining user entries for all users participating in a Sun Grid Engine, Enterprise Edition system is
required if Sun Grid Engine, Enterprise Edition is operated under a user share tree policy.

A list of currently configured user entries can be displayed via the gconf{1) —suserl option. The contents of
each enlisted user entry can be shown via the —suser switch. The output follows the user format description.
New user entries can be created and existing can be modified via the —auser, —-muser and —duser options to

qconf(1).

FORMAT

A user entry contains four parameters:
name

The user name.

oticket

The amount of override tickets currently assigned to the user.

fshare

The current functional share of the user.

default_project

The default project of the user.

Chapter 4 Reference Manual 415

SEE ALSO

sge_intro(1), gconf(1).

COPYRIGHT

See sge_intro(1) for a full statement of rights and permissions.

416 Sun Grid Engine * July 2001

COD_COMMD(8)

NAME

cod_commd — Sun Grid Engine communication agent

SYNOPSIS

cod_commd [-S] [—a aliasfile] [—dhr] [<help]
[-1l loglevel] [-m] fname | [-nd] [—p port]
[—s service |

DESCRIPTION

All network communication in a Sun Grid Engine cluster is performed via the communication daemons
cod_commd. Client programs like gsub(1) or gstat(1) as well as Sun Grid Engine daemons such as
cod_gmaster(8) or cod_execd(8) use the service provided by cod_commd in order to send/receive messages
to/from other Sun Grid Engine components.

cod_commd handles an arbitrary number of concurrent synchronous or asynchronous communications.
Usually one cod_commd is started up automatically on each host on which cod_gmaster(8), cod_execd(8)
or/and cod_schedd(8) are invoked. It is however possible to connect multiple hosts via one cod_commd or to
use a cod_commd on a submit or administrative Sun Grid Engine host (without running one of the other Sun
Grid Engine daemons) as communication agent for the Sun Grid Engine client programs invoked from that
host.

OPTIONS

-S

Forces secure ports to be used for communication between cod_commds and between other Sun Grid
Engine components and the cod_commds. This requires all Sun Grid Engine daemons to be started with
root permission and the client programs to be configured set-uid root. In turn, it ensures that unauthorized
communication is prohibited for non-root accounts.

—a aliasfile

A file containing Sun Grid Engine host aliases used by the cod_commd to resolve Sun Grid Engine unique
hostnames for all hosts in the cluster. The hostname resolving service of cod_commd is also used by all
other Sun Grid Engine components. The file format and the implication of its usage are described in
sge_h_aliases(5).

Chapter 4 Reference Manual 417

—dhr

The hostname resolving C-library functions (such as gethostent(3), gethostbyname(3) and
gethostbyaddr(3)) perform some kind of caching on some OS architectures. Network wide hostname
databases distributed by services such as DNS (Domain Name Service) and NIS (Network Information
Service) are updated with a delay of several minutes. This only affects applications which repeatedly
resolve hostnames (such as cod_commd). At start-up of a program the most recent information is accessed,
thus commands like frelnet(1) or nslookup(1) are not affected.

However, for cod_commd it makes no sense to resolve hostnames anytime (the returned information may
be out of date anyway) and resolving can be an expensive operation if the network is overloaded and/or
NIS or DNS servers are very busy. Therefore, cod_commd resolves hostname information from time to
time only.

Yet, if hostname resolving still causes problems due to network load, for example, it can be turned off with
the —dhr switch. The administrator has to be aware, that if the hostname resolving is turned off,
cod_commd has to be restarted as soon as the hostname databases change significantly.

—help
Prints a listing of all options.

—11 loglevel

Sets a logging level for error tracing. The error trace information is written to the file
/tmp/commd/err.<pid>. However, the directory /tmp/commd must be present, otherwise the tracing output
is discarded. At present, 255 is the only valid logging level.

-nd

Do not daemonize. If started with —nd, cod_commd maintains its connection to the controlling terminal
and thus outputs trace information directly to the terminal from which cod_commd was invoked. The trace
information is the same as being accessible via the -1l option (see above).

—p port_number

Use this TCP port for communication with other commds.

—s service_name

Use this service name and thus the associated TCP port for communication with other commds.

ENVIRONMENTAL VARIABLES

CODINE_ROOT

Specifies the location of the Sun Grid Engine standard configuration files. If not set a default of
/usr/CODINE is used.

COMMD_PORT

If set, specifies the tcp port on which cod_commd is expected to listen for communication requests. Most
installations will use a services map entry instead to define that port.

418 Sun Grid Engine * July 2001

COMMD_HOST

(Does not affect the behavior of cod_commd but of the other Sun Grid Engine components contacting
cod_commd.) If set, specifies the host on which the particular cod_commd to be used for Sun Grid Engine
communication of arbitrary Sun Grid Engine client programs or daemons resides. Per default the local
host is used.

RESTRICTIONS

cod_commd usually is invoked by a starting cod_gmaster(8) and cod_execd(8) and thus is running under root
permission. If started by a normal user the =S switch may not be used as the secure mode requires root
permission (see above).

SEE ALSO

sge_intro(1), sge_h_aliases(5), cod_execd(8), cod_qmaster(8), commdcntl(8).

COPYRIGHT

See sge_intro(1) for a full statement of rights and permissions.

Chapter 4 Reference Manual 419

COD_EXECD(8)

NAME

cod_execd — Sun Grid Engine job execution agent

SYNOPSIS

cod_execd [-help] [-]j log_file] [-nostart-commd]

DESCRIPTION

cod_execd controls the Sun Grid Engine queues local to the machine cod_execd is running on and
executes/controls the jobs sent from cod_gmaster(8) to be run on these queues.

Together with cod_execd a cod_commd(8) is brought up automatically on the same machine (if not already
present).

OPTIONS

=help
Prints a listing of all options.

-lj log_file
Enables job logging. All actions taken by cod_execd from receiving the job until
returning it to cod_qmaster(8) are logged to the log_file. This feature is also
available with the cod_gmaster(8) daemon.

-nostart-commd

Do not start up cod_commd(8) automatically with cod_execd and evaluate the
COMMD_HOST environment variable to find the corresponding cod_commd(8).

420 Sun Grid Engine * July 2001

LOAD SENSORS

If a load sensor is configured for cod_execd via either the global or the execution host specific cluster
configuration (see sge_conf(5)) the executable path of the load sensor is invoked by cod_execd on a regular
basis and delivers one or multiple load figures for the execution host (e.g. users currently logged in) or on the
complete cluster (e.g. free disk space on a network wide scratch file system). The load sensor may be a script
or a binary executable. In either case its handling of the STDIN and STDOUT stream and its control flow
must comply to the following rules:

The load sensor has to be written as infinite loop waiting at a certain point for input from STDIN. If the string
quit is read from STDIN, the load sensor is supposed to exit. As soon as an end-of-line is read from STDIN a
load data retrieval cycle is supposed to start. The load sensor then performs whatever operation is necessary to
compute the desired load figures. At the end of the cycle the load sensor writes the result to stdout. The format
is as follows:

A load value report starts with a line containing nothing but the word start.

Individual load values are separated by newlines.

Each load value report consists of three parts separated by colons (“:””) and containing no blanks.

The first part of a load value information is either the name of the host for which load is reported or the
special name “global”.

The second part is the symbolic name of the load value as defined in the host or global complex list (see
complex(5) for details). If a load value is reported for which no entry in the host or global complex list
exists, the reported load value is not used.

1 The third part is the measured load value.

1 A load value report ends with a line with the word end.

ENVIRONMENTAL VARIABLES

oooo

(W]

CODINE_ROOT

Specifies the location of the Sun Grid Engine standard configuration files. If not set a default of
/usr/CODINE is used.

COD_CELL

If set, specifies the default Sun Grid Engine cell. To address a Sun Grid Engine cell cod_execd uses (in the
order of precedence):

The name of the cell specified in the environment
variable COD_CELL, if it is set.
The name of the default cell, i.e. default.
COD_DEBUG_LEVEL

If set, specifies that debug information should be written to stderr. In addition the level of detail in which
debug information is generated is defined.

Chapter 4 Reference Manual 421

COMMD_PORT

If set, specifies the tcp port on which cod_commd(8) is expected to listen for communication requests.
Most installations will use a services map entry instead to define that port.

COMMD_HOST
If set, specifies the host on which the particular cod_commd(8) to be used for Sun Grid Engine

communication of the cod_execd client resides. Only evaluated if the -nostart-commd option was
specified at the cod_execd command-line. Per default the local host is used.

RESTRICTIONS

cod_execd usually is started from root on each machine in the Sun Grid Engine pool. If started by a normal
user, a spool directory must be used to which the user has read/write access. In this case only jobs being
submitted by that same user are treated correctly by the system.

FILES

<codine_root>/<cell>/common/configuration

Sun Grid Engine global configuration
<codine_root>/<cell>/common/local_conf/<host>

Sun Grid Engine host specific configuration
<codine_root>/<cell>/spool/<host>

Default execution host spool directory
<codine_root>/<cell>/common/act_gmaster

Sun Grid Engine master host file

SEE ALSO

sge_intro(1), sge_conf(5), complex(5), cod_commd(8), cod_gmaster(8).

COPYRIGHT

See sge_intro(1) for a full statement of rights and permissions.

422 Sun Grid Engine * July 2001

COD_QMASTER(8)

NAME

cod_gmaster — Sun Grid Engine master control daemon

SYNOPSIS

cod_gmaster [-help] [-]j log_file] [—nohist]
[—-noread-argfile] [—-nostart-commd]
[—nostart-schedd] [-nowrite-argfile | [—s]
[-truncate-argfile]

cod_gmaster -show-license

DESCRIPTION

cod_gmaster controls the overall Sun Grid Engine behavior in a cluster. For the purpose of scheduling jobs
cod_gmaster cooperates with cod_schedd(8). At start-up of cod_gmaster cod_commd(8) is usually brought up
automatically on the same machine (if not already present).

OPTIONS

—help
Prints a listing of all options.
-1j log_file

Enables job logging. All actions taken by cod_gmaster from submit to job exit are logged to the log_file.
This feature is also available with the cod_execd(8) daemon.

—-nohist

During usual operation cod_gmaster dumps a history of queue, complex and host configuration changes to
a history database. This database is primarily used with the gacct(1) command to allow for gsub(1) like —/
resource requests in the gacct(1) command-line. This switch suppresses writing to this database.

—noread-argfile

On primary start-up, cod_gmaster writes its command-line arguments to a file. During later start-ups, this
argument file will be read and the options contained in the file will be used as if supplied at the command-
line. This option suppresses reading of the argument file.

Chapter 4 Reference Manual 423

—nostart-commd

Do not start-up cod_commd(8) automatically with cod_gmaster.

-nostart-schedd

Do not startup cod_schedd(8) automatically with cod_gmaster. cod_gmaster currently does not start
cod_schedd(8) automatically. Thus this option has no effect.

—nowrite-argfile

On primary start-up, cod_gmaster writes its command-line arguments to a file. During later start-ups, this
argument file will be read and the options contained in the file will be used as if supplied at the command-
line. This option suppresses writing of the argument file.

turns on cod_gmasters silent mode. Usually cod_gmaster displays a license information on startup and
waits for a return to continue. With the -s switch cod_gmaster starts up silently.

—show-license

Displays the current licensing information for your Sun Grid Engine system. This option also works if
your license has expired and cod_gmaster would exit immediately otherwise. Use the displayed
information to request an appropriate license from your Sun Grid Engine support contact.

—truncate-ar gfile

On primary start-up, cod_gmaster writes its command-line arguments to a file. During later start-ups, this
argument file will be read and the options contained in the file will be used as if supplied at the command-
line. This option truncates the argument file.

ENVIRONMENTAL VARIABLES

CODINE_ROOT

Specifies the location of the Sun Grid Engine standard configuration files. If not set a default of
/usr/CODINE is used.

COD_CELL

If set, specifies the default Sun Grid Engine cell. To address a Sun Grid Engine cell cod_gmaster uses (in
the order of precedence):

The name of the cell specified in the environment
variable COD_CELL, if it is set.
The name of the default cell, i.e. default.
COD_DEBUG_LEVEL

If set, specifies that debug information should be written to stderr. In addition the level of detail in which
debug information is generated is defined.

424 Sun Grid Engine * July 2001

COMMD_PORT

If set, specifies the tcp port on which cod_commad(8) is expected to listen for communication requests.
Most installations will use a services map entry instead to define that port.

RESTRICTIONS

cod_gmaster is usually started from root on the master or shadow master machines of the cluster (refer to the
Sun Grid Engine Installation and Administration Guide for more information about the configuration of

shadow master hosts). If started by a normal user, a master spool directory must be used to which the user has
read/write access. In this case only jobs being submitted by that same user are treated correctly by the system.

FILES

<codine_root>/<cell>/common/configuration

Sun Grid Engine global configuration
<codine_root>/<cell>/common/local_conf/<host>

Sun Grid Engine host specific configuration
<codine_root>/<cell>/common/history

History database
<codine_root>/<cell>/common/gmaster_args

cod_gmaster argument file
<codine_root>/<cell>/spool

Default master spool directory

SEE ALSO

sge_intro(1), sge_conf(5), cod_commd(8), cod_execd(8), cod_schedd(8), cod_shadowd(8), Sun Grid Engine
Installation and Administration Guide

COPYRIGHT

See sge_intro(1) for a full statement of rights and permissions.

Chapter 4 Reference Manual 425

COD_QSTD(8)

NAME

cod_gstd — Sun Grid Engine foreign queueing system interface daemon

SYNOPSIS

cod_qstd [-help] [—-nostart-commd]

DESCRIPTION

cod_gstd provides an interface between Sun Grid Engine and other queueing systems being accessed via so
called transfer queues.

Together with cod_execd a cod_commd(8) is brought up automatically on the same machine (if not already
present).

For information on how cod_gstd can be configured see the section FILES below.

OPTIONS

—help
Prints a listing of all options.
—nostart-commd

Do not start up cod_commd(8) automatically with cod_gstd and evaluate the COMMD_HOST
environment variable to locate the corresponding cod_commd(8).

RESTRICTIONS

cod_gstd may only be started from root. If started by a normal user, a spool directory must be used to which
the user has read/write access. In this case only jobs being submitted by that same user are treated correctly by
the system.

The Sun Grid Engine Queueing System Interface must be licensed separately. Thus, this manual page is only
applicable for installations using this feature.

426 Sun Grid Engine * July 2001

ENVIRONMENTAL VARIABLES

CODINE_ROOT

If not set, a default of /ust/CODINE is used. In either case, the spool directory path is set to
<codine_root>/<cell>/spool/qstd/unqualified_hostname. This setting may be overwritten by the —s
command line option (see above).

COD_CELL

If set, specifies the default Sun Grid Engine cell. To address a Sun Grid Engine cell cod_gstd uses (in the
order of precedence):

The name of the cell specified in the environment
variable COD_CELL, if it is set.
The name of the default cell, i.e. default.
COD_DEBUG_LEVEL

If set, specifies that debug information should be written to stderr. In addition the level of detail in which
debug information is generated is defined.

COMMD_PORT
If set, specifies the tcp port on which cod_commd(8) is expected to listen for communication requests.
Most installations will use a services map entry instead to define that port.

COMMD_HOST
If set, specifies the host on which the particular cod_commd(8) to be used for Sun Grid Engine

communication of the cod_gstd client resides. Only evaluated if the -nostart-commd option was specified
at the cod_gstd command-line. Per default the local host is used.

FILES

The configuration for the QSI defining how cod_gstd is supposed to interface the foreign queuing systems is
expected in a so called QSI common directory containing the following files:

commands*

Every file with a name starting with the string commands is considered to contain the configuration for a
foreign queueing system interface. Please refer to gsi_conf(5) for a detailed description of the file format.
At least one such file must exist before cod_gstd is started up.

The location of the QSI common directory is defined by the cluster configuration parameter qsi_common_dir

(see sge_conf{(5)).

Chapter 4 Reference Manual 427

The cod_gstd spool directory contains several files, most of them used to temporarily store information. Two
of the files are important with respect to trouble shooting:

messages

The system messages and error logging file of cod_gstd.

log_of_commands

This file contains log-entries for each queueing system command procedure invoked by cod_gstd.

The cod_gstd spool directory is a sub-directory named qgsi to the cod_execd(8) spool directory of the
corresponding execution hosts.

In addition, the following files and directory are relevant to cod_gstd.

<codine_root>/<cell>/common/qsi
Default cod_gstd configuration
<codine_root>/<cell>/spool/<host>/qsi
Default cod_gstd spool directory
<codine_root>/<cell>/common/act_gmaster
cod_gmaster name file

SEE ALSO

sge_intro(1), gsi_conf(5), cod_commd(8), cod_qgmaster(8), Sun Grid Engine Installation and Administration
Guide.

COPYRIGHT

See sge_intro(1) for a full statement of rights and permissions.

428 Sun Grid Engine * July 2001

COD_SCHEDD(8)

NAME

cod_schedd — Sun Grid Engine job scheduling agent

SYNOPSIS

cod_schedd [-help] [-k] [—salg]

DESCRIPTION

cod_schedd computes the scheduling decision in a Sun Grid Engine cluster. The information necessary for the
decision is retrieved from cod_gmaster(8) via the Sun Grid Engine Application Programmers Interface (API -
see cod_api(3) for details). After applying the scheduling algorithm, cod_schedd communicates the
scheduling decision back to cod_gmaster(8) again via the Sun Grid Engine API. In order to trigger a
cod_schedd run, cod_gmaster(8) samples changes in the cluster status and notifies cod_schedd in periodical
time intervals.

Together with cod_schedd a cod_commd(8) is brought up automatically on the same machine (if not already
present).

By using the —tsm option of the gconf{1) command, cod_schedd can be forced to print trace messages of its
next scheduling run to the file <codine_root>/<cell>/common/schedd_runlog. The messages indicate the
reasons for jobs and queues not being selected in that run

OPTIONS

—help

Prints a listing of all options.
-k

Initiates a controlled shutdown of a running cod_schedd on the same host.
—salg

Display a list of feasible scheduling algorithms to choose from via the scheduler configuration (see
sched_conf(5)).

Chapter 4 Reference Manual 429

ENVIRONMENTAL VARIABLES

CODINE_ROOT

Specifies the location of the Sun Grid Engine standard configuration files. If not set a default of
/usr/CODINE is used.

COD_CELL

If set, specifies the default Sun Grid Engine cell. To address a Sun Grid Engine cell cod_schedd uses (in
the order of precedence):

The name of the cell specified in the environment
variable COD_CELL, if it is set.
The name of the default cell, i.e. default.
COD_DEBUG_LEVEL

If set, specifies that debug information should be written to stderr. In addition the level of detail in which
debug information is generated is defined.

COMMD_PORT

If set, specifies the tcp port on which cod_commad(8) is expected to listen for communication requests.
Most installations will use a services map entry instead to define that port.

FILES

<codine_root>/<cell>/spool/qmaster/schedd
cod_schedd spool directory
<codine_root>/<cell>/common/sched_runlog
cod_schedd trace information
<codine_root>/<cell>/common/sched_configuration
cod_schedd configuration
See sched_conf{5) for details on the scheduler configuration file.

SEE ALSO

sge_intro(1), cod_api(3), sched_conf(5), cod_commd(8), cod_gmaster(§).

COPYRIGHT

See sge_intro(1) for a full statement of rights and permissions.

430 Sun Grid Engine * July 2001

COD_SHADOWD(8)

NAME

cod_shadowd — Sun Grid Engine shadow master daemon

SYNOPSIS

cod_shadowd

DESCRIPTION

cod_shadowd is a “light weight” process which can be run on the so called shadow master hosts in a Sun Grid
Engine cluster to detect failure of the current Sun Grid Engine master daemon cod_gmaster(8) and to start-up
anew cod_gmaster(8) on the host on which the cod_shadowd runs. If multiple shadow daemons are active in
a cluster, they run a protocol which ensures that only one of them will start-up a new master daemon.

The hosts suitable for being used as shadow master hosts must have shared root read write access to the
directory <codine_root>/<cell>/common as well as to the master daemon spool directory (Default
<codine_root>/<cell>/spool/qmaster). The shadow master hosts need to be contained in the file
<codine_root>/<cell>/common/shadow_masters.

RESTRICTIONS

cod_shadowd may only be started from root.

ENVIRONMENT VARIABLES

CODINE_ROOT

Specifies the location of the Sun Grid Engine standard configuration files. If not set a default of
/usr/CODINE is used.

Chapter 4 Reference Manual 431

COD_CELL

If set, specifies the default Sun Grid Engine cell. To address a Sun Grid Engine cell cod_shadowd uses (in
the order of precedence):

The name of the cell specified in the environment
variable COD_CELL, if it is set.
The name of the default cell, i.e. default.
COD_DEBUG_LEVEL

If set, specifies that debug information should be written to stderr. In addition the level of detail in which
debug information is generated is defined.

COMMD_PORT

If set, specifies the tcp port on which cod_commd(8) is expected to listen for communication requests.
Most installations will use a services map entry instead to define that port.

COMMD_HOST

If set, specifies the host on which the particular cod_commd(8) to be used for Sun Grid Engine
communication of the cod_gstd client resides. Per default the local host is used.

FILES

<codine_root>/<cell>/common

Default configuration directory
<codine_root>/<cell>/common/shadow_masters

Shadow master hostname file.
<codine_root>/<cell>/spool/gmaster

Default master daemon spool directory

SEE ALSO

sge_intro(1), sge_conf{(5), cod_commd(8), cod_gmaster(8), Sun Grid Engine Installation and Administration
Guide.

COPYRIGHT

See sge_intro(1) for a full statement of rights and permissions.

432 Sun Grid Engine * July 2001

COD_SHEPHERD(8)

NAME

cod_shepherd — Sun Grid Engine single job controlling agent

SYNOPSIS

cod_shepherd

DESCRIPTION

cod_shepherd provides the parent process functionality for a single Sun Grid Engine job. The parent
functionality is necessary on UNIX systems to retrieve resource usage information (see getrusage(2)) after a
job has finished. In addition, the cod_shepherd forwards signals to the job, such as the signals for suspension,
enabling, termination and the Sun Grid Engine checkpointing signal (see sge_ckpt(1) for details).

The cod_shepherd receives information about the job to start from the cod_execd(8). During the execution of
the job it actually starts up to 3 child processes. First a prolog script if this feature is enabled by the prolog
parameter in the cluster configuration (see sge_conf(5)). Second the job itself and third an epilog script if
requested by the epilog parameter in the cluster configuration. The prolog and epilog scripts are to be
provided by the Sun Grid Engine administration and are intended for site specific actions to be taken prior and
after execution of the actual user job. See prolog(5) or epilog(5) for detailed information.

After the job has finished and the epilog script is processed, cod_shepherd retrieves resource usage statistics
about the job, places them in a job specific subdirectory of the spool directory of cod_execd(8) for reporting
through cod_execd(8) and finishes.

RESTRICTIONS

cod_shepherd should not be invoked manually, but only by cod_execd(8).

FILES

<execd_spool>/job_dir/<job_id> job specific directory

Chapter 4 Reference Manual 433

SEE ALSO

sge_intro(1), sge_conf(5), cod_execd(8).

COPYRIGHT

See sge_intro(1) for a full statement of rights and permissions.

434 Sun Grid Engine * July 2001

CODCOMMDCNTL(8)

NAME

codcommdcntl — Sun Grid Engine communication agent control command

SYNOPSIS

codcommdecntl [—d | -k | —t level |
[—gid commprocname] [-h[elp]] [—p port] [-S]
[-unreg commprocname id]

DESCRIPTION

codcommdcntl can be used to control the behavior of cod_commd(8) or to retrieve information from a running
cod_commd(8).

OPTIONS

-d

Dump internal structures of the running cod_commd(8) process to /tmp/commd/commd.dump. The
directory /tmp/commd must exist and cod_commd(8) must have write access to it. The request is ignored
otherwise.

This option is mainly intended for debugging purposes. The functionality of the addressed cod_commd(8)
is not affected.

X

Kill the addressed cod_commd(8). Pending communications at the time of a kill request will be discarded
immediately, yet the shutdown of a cod_commd(8) will not leave the processes being connected to the
aborting process in an inconsistent state.

—t level

codcommdcntl establishes a connection to cod_commd(8) and displays continuous trace output
corresponding the trace level specified by level. The output consists of a subset of the trace output
displayed if cod_commd(8) is invoked with the —11 option.

Currently the only trace level being supported is 255.

Chapter 4 Reference Manual 435

—gid commprocname

Retrieve communication process identification number of commprocname. Sun Grid Engine components
which enroll to cod_commd(8) to be able to communicate with other Sun Grid Engine processes are
registered by cod_commd(8) with an unique identification consisting of a name and an identification
number. The identification name is identical with the name of the Sun Grid Engine component

(e.g. cod_qmaster for cod_gmaster(8)). The identification number can be retrieved by the —gid option.

—help
Prints a listing of all options.
—p commdport

Port number to be used in order to address cod_commd(8).
-S

Forces secure ports to be used for communication between cod_commds and between other Sun Grid
Engine components and the cod_commds. This requires all Sun Grid Engine daemons to be started with
root permission and the client programs to be configured set-uid root. In turn, it ensures that unauthorized
communication is prohibited for non-root accounts.

—unreg commprocname id

Unregister Sun Grid Engine component commprocname registered with Id id to cod_commd(8)
(see the —gid above for a description of commprocname and id).

To unregister a Sun Grid Engine component from cod_commad(8) can become necessary if a Sun Grid
Engine daemon such as cod_gmaster(8), cod_execd(8) or cod_schedd(8) is aborted in an uncontrolled
fashion (e.g. by sending the signal SIGKILL via kill(1)) and cod_commd(8) denies restart of that
component with the message error enrolling to commd: COMMPROC ALREADY REGISTERED.

The registration facility of cod_commd(8) is used to avoid redundant Sun Grid Engine daemons running
on the same host. If a Sun Grid Engine component is aborted but unable to unregister from cod_commd(8)
the registration is kept alive until a time-out of several minutes passes or until the communication process
is unregistered manually.

ENVIRONMENTAL VARIABLES

COMMD_PORT

If set, specifies the tcp port on which codcommdcntl is expected to listen for communication requests.
Most installations will use a services map entry instead to define that port.

COMMD_HOST

If set, specifies the host on which the particular cod_commd to be used for Sun Grid Engine
communication of codcommdcntl resides. Per default the local host is used.

436 Sun Grid Engine * July 2001

SEE ALSO

sge_intro(1), cod_commd(8), cod_execd(8), cod_qgmaster(8), cod_schedd(8).

COPYRIGHT

See sge_intro(1) for a full statement of rights and permissions.

Chapter 4 Reference Manual 437

438 Sun Grid Engine * July 2001

Index

SYMBOLS
l'in .qtask file 207
#!

determines command interpreter 186
#$ 187
$COD_TASK_ID 195
$HOME 186
$HOSTNAME 186
$JOB_ID 186
$JOB_NAME 186
$pe_hostfile 189
$TASK_ID 186
$USER 186
.cod_request

private request file 136

.codine_aliases
file format 134
user path aliasing 134
.cshrec 53,174
.kshrc 53
Jlogin 174
.profile 53
.qmon_preferences 217, 234, 238
.qtask 206
meaning of ! 207

precedence global/local 207
syntax 207

Xdefaults 139, 237
Xxinitrc 139, 237
Xresources 237

/etc/login 174
/etc/services 23,42, 46
/tmp_mnt

problems with automounter 134
/usr/CODINE 43
/usr/lib/X11/app-defaults 138
<codine_root> 43
-? qsub option 231
@

differentiate group from user name 172

NUMERICS
3rd_party 204, 206, 208

A

abort installation procedure 51
-ac
qsub option 182
-Acal qconf option 112
-acal qconf option 112
access
file permission 22

access list 37,124,171
add 124

access lists
show all 124

access lists for PE 146
access restriction

Index 439

for parallel environments 197
access-allowed-list 171
access-denied-list 171

account
administrative 22
installation 22
root 22

account for installation 46
accounting 139

and PEs 152

for QS jobs 154

with qacct 139

accounts required 137
ACL 171
act_qmaster 56
act_qmaster file 164
active comments
for QSI 198
add
calendar 112
manager 119
operator 121
queue 87
user 124

add administrative host 52, 59
add execution host 67
add queue 87
add submit host 52, 61
adjustment of load 131
administration host 18, 57

host

administration 164

setting up 57
administrative host 47

add 52, 59

delete 59

show 60

administrative user
file handling 46
administrator 22
administrator defined complex 169
-ae qconf option 67
-ah qconf option 59
algorithm 127
aliases

Index 440 Sun Grid Engine * July 2001

csh/qtesh 207

aliasing paths
file format 134
file interpretation 135

allocating hard resources 194
allocating soft resources 194
allocation rule 147

-am qconf option 119

-ao qconf option 121
app-defaults 237

-Aq qconf option 87

-aq qconf option 87

ARC 188

arguments in scripts 187

array
job 38

array job 186, 194
index 195
task 195

-as qconf option 61
assigning job priorities 128
at 237
Attribute 235
attribute information 234
attribute short-cut 100
attributes

attached to queue 235

Default field 104

fixed 235

FORCED flag 100

inheritance 102
-au qconf option 124, 144, 145, 149, 150
automounter 44

problems with 134
availability

of host resources 62
available capacity 88

basic cluster configuration 70
batch

job 173

qmake usage 210

queues 200
type of queue/job 167
batch job
monitoring 55
submitting 54
BSD UNIX 52

C

C
critical message 158
-c
qtcsh option 206
C program integration 206
-C gsub option 187
-c qsub switch 213
calendar 76
add 112
delete 112
modify 113
show 113
calendar management 109
calendar_conf 109
capacity
available 88
capacity planning 88
cell 37,42, 44,188
checking consistency
of ajob 182
checkpoint library 140
checkpoint process hierarchies 141
checkpointing 38, 140, 182, 211, 213
and restarting 189
at shutdown of cod_execd 214
file system requirements 215
kernel level 141
migration 212
process hierarchies 211
queue type 143
type of queue/job 167
user level 140, 211
checkpointing directory 215
checkpointing environment 38, 141
ckpt_dir 215
clean queue 87

clean-up procedure

for QS-jobs 154
Clear Error 219
-clear gqsub option 136
cluster 38

show configuration 71
cluster configuration 70
cod_aliases

file format 134

global path aliasing 134
COD_CELL 188
COD_CKPT_DIR 188
COD_CKPT_ENV 188
cod_commd 19, 51
cod_conf 72
cod_execd 18, 19, 57

kill 68, 69

looking for via ps 53
COD_O_HOME 188
COD_O_HOST 188
COD_O_LOGNAME 188
COD_O_MAIL 188
COD_O_PATH 188
COD_O_SHEL 188
COD_0O_TZ 188
COD_O_WORKDIR 188
cod_pe 196

cod_qgmaster 18, 51, 217
kill 69

cod_gstd
configuration file 153
queueing system transfer daemon 153
spool directory 154
cod_request
global default request 136
cod_schedd 18, 51, 127
configuration file 129
kill 69

cod_shadowd 55
COD_STDERR_PATH 188
COD_STDOUT_PATH 188
COD_TASK_ID 188
CODINE_ROOT 22, 43, 53, 188
command line user interface 19

Index 441

command-line configuration of manager accounts

119
commd 19
COMMD_PORT 53
common

access for shadow master 55

access permissions 137
complex 38

administrator defined 169

display 169

display name list 169

global 169

host 91, 169

name column 170

queue 169

relop column 170

requestable column 170

shortcut column 170
complex attribute

load parameter 113
complex attributes

consumable 62

Default field 104

fixed 62

FORCED flag 100

inheritance 102
complex_list 167
complex_values 167

in host_conf 100
Condor 140
configuration

display 71

global 70

local 70

modify 71
configure queues 234
configuring hosts 57

configuring operator accounts from command-line

121
consistency checking 182, 218
consumable 88

host related values 62

information per queue 234
consumable resource 235
Consumable Resources 88
consumable resources 88, 129

Index 442 Sun Grid Engine ¢ July 2001

consumables
managing disk space 106
context 182
Control Slaves 152
control slaves
PE parameter 147
-cq qeonf option 87
critical message 158
crontab 237

csh 206

aliases 207
csh, shell 173
customization

qmon 217, 234, 238
customizing qmon 138, 237
-cwd

problems with 134

D

-d gqmod option 70, 237

daemon
execution 18, 19, 57
master 18, 56
scheduler 18

daemons

restart 70
date 54
-dc

qsub option 182
-dcal qconf option 112
-de qconf option 67

debug mode 159
trace output 160

debugging with dl 160
Default

field in complex configuration 104

default 88

default request 135
.cod_request 136
file format 136
files 135
gmon 137
qsh 137

default requests

order of precedence 136
delete

manager 119

operator 121

queue 87

user 124
delete administrative host 59
delete calendar 112
delete execution host 67
delete submit host 61
delete_job

QS configuration file entry 154
dependency 178
dependency of jobs 231
-dh qconf option 59

directory
root 22

disable
force 234
permission 234, 237
queue with qmod 236
disable a queue
permission to 121
disable queue 70
disable queues 233
disabled queue 109

disk space

and h_fsize 106

management via consumables 106
disk space requirements 45

disk space requirements of checkpointing 215

dispatching jobs
with generic queue requests 200
with named queue requests 200

DISPLAY 201

displaying job priorities 128

dl 160

-dm qconf option 119

-do qconf option 121

-dq qconf option 87

-ds qconf option 61

-du gconf option 124

dynamic load balancing 140, 212

E
E
error message 158
-e qmod option 237
e-mail 158
at beginning of job 230
at end of job 230
monitoring jobs 230
when job is aborted 230
when job is suspended 230
email 138, 230
format of error mail 159
embed options 177
embedding of qsub arguments 187

enabe
force 234

enable

permission 234, 237

queue with qmod 236
enable a queue, permission to 121
enable queues 233
ENABLE_FORCED_QDEL 231
enabled queue 109
ENVIRONMENT 188

environment
checkpointing 38, 141
parallel 39
variables 188
environment variables 188
for parallel jobs 198
epilog 77
epilogue 77
ernel level checkpointing 211
Error 182
error
job state 219
error message 158
error reporting 160
example scripts 54
exec system call 150
execd 18,19
execution daemon 18, 19, 57
kill 68, 69

execution host 18,47, 164
add 67

Index 443

configuration with cron 68
delete 67

installation procedure 51
modify 68

off-line configuration 68
show 68

show list 68

status 68

execution host configuration
complex_values 100

execution host spool directory 44
execution hosts 57

execution method 77

explicitly suspended jobs 234

F

-f qdel option 231

-f qmod option 231, 237

-f gstat option 227

-f gstat option with -qsi 157
fair-share-scheduling 199

fault tolerance and checkpointing 211
FIFO 125

file access permission 46

file access permissions 22

file handling
administrative user 46
file size limit
h_fsize 107
first-in-first-out 125, 127, 199
unfair scheduling 128
fixed complex attributes 62, 235
floating licenses
management of 99
Force 217
force
qmod 237
suspend, resume, disable, enable 234
FORCED
flag for complex attributes 100
format
default request file 136
messages file 158

Index 444 Sun Grid Engine * July 2001

G

getrusage 140
global complex 169
load parameters 113
global configuration 70
gmake 208
-j 210
group 38

H
h_fsize
disk space management via 106
hard files size limit 107
halt Sun Grid Engine 69
hard request 194
hard resource requirements 38
hold
user 178
hold back job 217
HOME 188
home directory path 188
host 38
add administrative 59
add execution 67
add submit 61
administration 18, 57
configuration with qmon 58
delete administrative 59
delete execution 67
delete submit 61
execution 18, 57, 164
execution status 68
master 18, 56, 164
modify execution 68
overview on type of 163
show administrative 60
show execution 68
show execution list 68
show submit 62
submit 18, 57, 165
host complex 91, 169
load parameters 113
host file for PEs PE
host file 150

host file for PVM 150
host object 57

host_conf 164
complex_values entry 100

HOSTNAME 188
hostname 167

info message 158
id

equivalent user 42
identical user-ids 137
index

of array job 195
info message 158
-inherit 205, 208, 209

inheritance of complex attributes 102

Initial State 76
inst_codine 51
install_execd 25
install_gmaster 24
installation

accounts 22

as non-root 24, 25

as root 24, 25

with root account 46

with unprivileged account 46
installation account 46
installation directory 43
installation kit 50
installation procedure 50

abort 51

execution host 51
integration

of C programs 206

of Java programs 206
interactive

qmake usage 210

type of queue/job 167
interactive job handling 201
interactive jobs 176

default requests 137

submitting with gqsh 203

interactve jobs 200

J
g
gmake option 210
gqmake option 210
gstat option 182
-j qacct option 140
Java program integration 206
job 38
array 186, 194
array index 195
array task 195
context 182
error state 219
explicitly suspended 234
hold 217
interactive handling 201
monitoring 55
monitoring with qstat 227
not scheduled 126
notify 178
parallel 39
pending 199
pending reasons 126
spooling 200
submit with qsub 189
submitting 54
verify 182
job array 38
job class 38
job dependencies 231
job dependency 178
Job is first task 147
job priorities
assigning 128
displaying 128
job priority 127
value range 127
job slots 233
job_finished
QS configuration file entry 155
JOB_ID 188
job_id 55
range of 188

Index 445

retrieve with qstat 230
JOB_NAME 188
job_status

QS configuration file entry 155
Just verify 182

K

-kej qconf option 68, 69
kernel level checkpointing 141
kill
execution daemon with jobs 68, 69
master daemon 69
kill scheduler daemon 69
-km qgconf option 69
K-multiplier 193
k-multiplier 193
-ks qconf option 69
ksh, shell 173

L

-1 qacct option 139
-1 qstat option 228
-1 qsub option
for parallel job 197
LAST_HOST 188
limit
h_fsize 107
per job 107
per process 107
limits
per queue slot 235
list of
managers 173
operators 173
owners 173
load 130
adjustment 125, 130, 131
affected by performance 129
correction 130
reporting 125
scaling 125
site specific 108

Index 446 Sun Grid Engine * July 2001

Load Adjustment 131
load adjustment 236
load balancing 170

dynamic 140, 212

load formula 129

load information 234

load management 15, 41, 161
load parameter

complex attribute 113
virtual_free 104

load parameters 235

adjusted by number of processor 129
site specific 129

load scaling factors 129
load sensor interface 108

load_sensor_command

QS configuration file entry 155

load_sensor_file

QS configuration file entry 155

load_thresholds 129
local configuration 70
logfile

messages 158

login_shells

logins necessary to use Sun Grid Engine 122, 137

configuration parameter 174

login-shell 174
LOGNAME 189

M

-m

gsub option 219

-M qsub option 230

-m

qsub option 230

MAIL 188

mail 70

make 208
manager 38, 117

add 119

delete 119
display list 173
show 119

manager accounts

commd-line configuration 119

configuring with qmon 118
manager, user category 162
managing disk space 106
manipulate queues 75
mapping

of Sun Grid Engine/QS job-ids 154
master

as administration host 52

as execution host 51

as submit hosts 52

master daemon 18, 56
kill 69

master host 18,47, 56, 164
restriction 51

master installation procedure 50

master queue 182

master spool directory
access for shadow masters 55

maxgjobs 126, 130
maxujobs 126, 130
-Mcal qconf option 113
-mcal gconf option 113
-mconf qconf option 71
-Me qconf option 68
-me qconf option 68
memory 193
multipliers 193
requirements for checkpointing 215

memory oversubscription
avoid 103

message passing 197
Message Passing Interface 145

messages
logfile 158

messages file
format 158

migr_load_thresholds 129, 212
migrate jobs 140

migration 38
reasons 212

migration of checkpointing jobs 212
min_cpu_interval 214

M-multiplier 193

m-multiplier 193

modify calendar 113
modify execution host 68
modify pending jobs
job
modify 217
modify queue 87
monitor queues 75
monitoring a QS 157
monitoring by electronic eail 230
monitoring jobs with gstat -f 227
Motif GUI 138
MPI 145, 147, 152, 196
MPICH 152
mpirun 147
-Mq qconf option 87
-mq qconf option 87
multi CPU machines 129
multi processor systems 129
multipliers 193

N
N
notice message 158
name
in complex definition 170
navigating through the Sun Grid Engine system 163
network services 46
newgrp 172
NFS Network File System 215
problems with 134
NHOSTS 189
nice 128
NIS 23, 42, 46, 53
notice message 158
Notify 76
notify a job 178
-now 205
qlogin option 201
qrsh option 201
gsh option 201
gsub option 201
NQS 156, 189
NQUEUES 189

Index 447

NSLOTS 189
number of jobs
restricted 130

number of processors
adjusts load 129

o

ob sorting 125
operator 39, 117
add 121
delete 121
display list 173
show 121
operator accounts
command-line configuration 121
configuring with qmon 120
operator, user category 162
option embedding 177
OSF/1 Motif 138
oversubscription 88
overview on host types 163
overview on the Sun Grid Engine system 163
owner 39
display list 173
owner, user category 162
owner_list 167
owners of queues 117

P

P column in gstat output 199
-p qalter option 128
PAM-CRASH 99
parallel
type of queue/job 167
parallel computing 145
parallel environment 39, 145
access lists 146
access restrictions 197
allocation rule 147
displayed with qmon 196
host file 150
stop procedure 147

Index 448 Sun Grid Engine * July 2001

submitting jobs to 196
Parallel Environment Configuration 196
parallel environment interface 171
parallel job 39, 189

environment variables 198

resource requirement 197
parallel jobs 196
parallel virtual machine 145
PATH 188, 189
path

default shell search 189
path aliasing

file format 134

file interpretation 135
PE 189

access lists 146

access restrictions 197

accounting 152

allocation rule 147

control slaves parameter 147

displayed with qmon 196

parallel environment 145

process control 152

resource limits 152

start-up procedure 147, 150

stop procedure 147, 151

submitting jobs to 196

tight integration 152
-pe 210
-pe qsub option 197
PE start-up procedure 150
PE_HOSTFILE 189
pending

reasons 126
PENDING JOBS 228
pending jobs 199, 228

consistency checking 218

priority value 199
per job limits 107
per process limits 107
perferences

qmon 217
performance

affectiong load 129
permission

file access 22

to suspend, resume, disable, enable 234
to suspend, unsuspend, disable, enable 237

persmission

file access 46
physical memory

and virtual_free 103
please

display properties 167
policy 39

queue selection 127

scheduling 127
preferences

qmon 234, 238
prefix string 177
price performance ratio 129
primary

master host 55
priorities

assigning 128

displaying 128
priority 39

job 127

value of pending jobs 199

value range 127

problems startung shadow gmaster 56

process control
and PEs 152

process hierarchy
checkpointing 141, 211

processor number
adjusts load 129

processors 167
prolog 77
prologue 77
properties
queue 170
properties of a queue 167
properties of queues 170
ps
to look for cod_execd 53
to look for qmaster 52

PVM 145, 147,152,196
pvm 145
PVM host file 150

Q

qacct 19

generating accounting statistic 139

-j 140

-1139

referenceing resoure requirements 139
qalter 19, 217

assigning job priorities 128

consistency checking 218

context 182

-l option 100

-p 128

scheduler monitoring with 126

-w 126

qeconf 19
-Acal 112
-acal 112
-ae 67
-ah 59
-a0 121
-Aq 87
-aq 87
-as 61
-au 124, 144, 145, 149, 150
-cq 87
-dcal 112
-de 67, 68
-dh 59
displaying complex 169
displaying complex name list 169
displaying operator accounts 173
displaying trusted hosts 164
-do 121
-dq 87
-ds 61
-du 124
-kej 68, 69
-km 69
-ks 69
maintain calendar configuration 112
maintain manager list with 119
maintain operator list with 121
-mcal 113
-mconf option 71
-Me 68
modify configuration 71
-Mq 87
-mq 87

Index 449

-sc 169
-scal 113
-scall 113
-scl 169
-sconf 71
-se 68
-se option 164
-sel 68, 164
setting up administration hosts 57
setting up submit hosts 57
setting up trusted hosts 57
-sh 60, 164
show configuration 71
-sm 119
-so0 121
-sp 196
-spl 196
-sq 87
-sql 88
-ss 62, 165
-su 124,172
-sul 124, 172
-tsm 127
qconf -ah 52
qconf -am 119
qconf -as 52
gconf -dm 119
qdel 19, 195
-f 231
ghold 20, 195
ghost 20, 68, 164
qlogin 20, 200, 204
context 182
-now 201
qlogin vs. qrsh 204
qmake 20, 208
batch usage 210
-inherit 209
interactive usage 210
- 210
-pe 210
syntax 209
gqmake option 209, 210
qmaster 18, 56
looking for via ps 52
gqmaster spool directory 44
qmod 20, 70, 195

Index 450 Sun Grid Engine ¢ July 2001

-d 70, 237
disable queue 70, 236
-e 237
enable queue 236
-f 231,237
force 237
-5 231
-s qmod option 237
suspend queue 236
suspending a queue 237
unsuspend queue 236
-us 231, 237
with crontab or at 237
Qmon 138, 139
qmon 18, 20, 138
and embedded script arguments 187
configuring manager accounts 118
configuring operator accounts 120
customization 217, 234, 238
customizing 138, 237
default requests 137
displaying parallel environments 196
host configuration 58
preferences 217, 234, 238
update 234
Qmon resource file 237
gname 167
qresub 20
qrls 20, 195
qrsh 20, 200, 204
-inherit 205
-now 201, 205
syntax 205
-verbose 205
within qtcsh 206
qrsh option 205
qrsh vs. glogin 204
qrshmode 208
QS 153,198
monitoring 157
QS command procedures
rules 155
QS interface configuration file 153
-qs_args qsub option 198
gselect 20
-l option 100
gsh 20, 201

context 182

default requests 137

-1 option 100

-now 201

submitting interactive jobs 203
QSI 153,198

configuration file 154
QSI command procedure example 156
QSI configuration file example 156
-gsi qstat option 155, 157
gstat 18, 20, 195

displaying job priorities 128

-f monitoring jobs with 227

-f option with -gsi 157

-j 182

-1228

-1 option 100

monitor batch jobs 55

monitoring jobs with 227

P column 199

PENDING JOBS 228

-qsi option 155, 157

qtype column 228

-1 228

resource requirements 228

retrieve job_id 230

state column 227

states column 228

used/free column 228
qsub 18, 21

-2 231

-ac 182

arguments in scripts 187

-C 187

-c213

-clear 136

context 182

-cwd for checkpointing jobs 215

-dc 182

-1 for parallel job 197

-1 option 100

-M 230

-m 230

-m a 219

-now 201

options, read from file 194

overriding embedded options from command

line 194

-pe 197
-qs_args 198
-r option 76
requesting attributes 170
submit batch job 54
submit jobs with 189
submitting a parallel job 196
submitting generic requests 171
submitting to named queue 189, 190
-t 195
-V for parallel job 198
-v for parallel job 198
qtask file 206
qtcsh 21, 206
aliases 207
-c 206
shell builtin command qrshmode 208
usage 206
qtype
of queue/job 167
gstat column 228
quantity syntax 193
QUEUE 189
queue 19, 39
add 87
attributes 235
clean 87
complex list 167
complex values 167
configuration 234
configuration template 87
delete 87
disable 233
disable with qmod 236
disabled by calendar 109
display list 166
enable 121, 233
enable a 121
enable with qmod 236
enabled by calendar 109
manipulate 75
master 182
modify 87
monitor 75
owner 117,121, 162
owner_list 167
processors 167
properties 170

Index 451

resumed by calendar 109
selection by seq_no 130
selection policy 127
shell parameter 186
show 87
show list of 88
slave 182
slot limits 235
slots 167
suspend 121, 233
suspend with gmod 236
suspended by calendar 109
type for checkpointing 143
unsuspend 121
unsuspend with qmod 236
unsuspended by calendar 109
user access list 167
queue calendar 109
queue complex 169
load parameters 113
queue sorting 125
queue_conf 107
queue_sort_method 130, 200
queueing_system
queue configuration entry 154
queuing system interface 153, 198
queuing_system
QS configuration file entry 154
queuing_system_up
QS configuration file entry 154

R
-r
gstat option 228
-r qsub option 76
range of job_id 188
REAL 139
reasons for not scheduling jobs 126

redirection
stderr 55
stdout 55
relation operation 170
release job
job
release 217

Index 452 Sun Grid Engine ¢ July 2001

relop in complex definition 170
remsh 204
REQUEST 189
request
hard 194
name 189
soft 194
requestable
in complex definition 170

requirements
hard 38
soft 39

rerun
default queue policy 76
jobs 76

resource 39
allocation algorithm 194
usage 140

resource capacity 235
resource consumption information 234
resource customization template 138

resource limits
and PEs 152

resource requirement
for parallel job 197

resource requirements
hard 38
referencing with qacct 139
soft 39

resource requirements with qstat 228
resources
available on host 62
x-windows 138
restart files 140
restart mechanism 211
restart Sun Grid Engine daemons 70
RESTARTED 189
restarted checkpointed jobs 189
restarted job script 213
restrict number of jobs 130
resume
force 234
permission 234, 237
resume job method 77
resume queue 233

resumed queue 109
rlogin 200, 204

root
installation as 24, 25

root account 22, 46
root directory 22, 43
rsh 54,200, 204
rules

for QS command procedures 155

S
-s qmod option 231
sacle load 129
Save 217
-sC

gsub option 182
-sc qconf option 169
-scal qconf option 113
-scall qconf option 113
schedd 18
schedd spool directory 44
schedd_conf 129, 130
schedd_job_info 218
Scheduler Configuration 131
scheduler configuration file 129

scheduler daemon 18
kill 69

scheduler monitoring 127
qalter 126

scheduling

activities 124
scheduling policy 127
scheduling procedure 126
-scl qconf option 169
-sconf 71
-sconf qconf option 71
script embedding 187
-se qconf option 68, 164
-sel qconf option 68, 164
selecting queues by seq_no 130
seq_no 130, 200
seqno 130

sequence number 125
services 42, 53

services database 23, 46
setrlimit 107
settings.csh 53
settings.sh 53

-sh qconf option 60, 164
sh, shell 173

shadow master
access to common directory 55
hostname file 55

shadow master host 47, 55

shadow qmaster
problems starting 56
shadow_masters 55
shadow_masters file 47
SHELL 188, 189
shell
queue parameter 186
scripts 173
Shell Start Mode 76
shell_start_mode 185

short-cut
for attribute name 100
shortcut
in complex definition 170
show
all access lists 124
managers 119
operators 121
queue configuration 87
queue list 88
user access list 124

show administrative hosts 60
show calendar 113

show configuration 71

show execution host 68

show execution host list 68
show submit hosts 62
shut-down Sun Grid Engine 70
shutdown the PE 151

site spcific load parameters 129
site specific load information 108
Skip 182

slave queue 182

Index 453

Slot-Limits/Fixed Attributes 235
slots 167

-sm qconf option 119

-so qconf option 121

soft request 194

soft resource requirements 39
-sp qconf option 196

space sharing 103, 104

-spl qconf option 196

spool directories 44

spool directory
of cod_qgstd 154

spooling jobs at qmaster 200
-sq qconf option 87
-sql qconf option 88
-ss qconf option 62, 165
standard error 174
standard output 174
start job method 77
start-up procedure 147
state
column in gstat output 227
states
gstat column 228
STDERR
of QS submit command 156
of QS-jobs 154
stderr redirection 55
redirection
stderr 159
STDOUT
of QS submit command 156
of QS-jobs 154
stdout redirection 55
stop procedure 147
stop procedure for PE 151
stty 53, 54
-su qconf option 124, 172
submit
QS configuration file entry 154
with qsub 189
submit host 18, 48, 165
add 52, 61
delete 61
show 62

Index 454 Sun Grid Engine ¢ July 2001

submit hosts 57
setting up 57
-sul qconf option 124, 172
Sun Grid Engine root directory 43

Sun Grid Engine startup procedure 70

supercomputer 153, 198
suspend

a queue 237

a queue, permission to 121

force 234

permission 234, 237

queue with qmod 236
suspend job explicitly 234
suspend job method 77
suspend queues 233
Suspend Thresholds 79
suspend thresholds 79
suspended queue 109
suspension 39
swap space 103

and virtual_free 103
swapping 103

avoid 103

syntax
time value 193

SYSTEM 139
SYSV UNIX 52

T
-t
gsub option 195
task 195
TCP 23
tesh 173, 206
telnet 200, 204
template
for queue configuration 87
for resource customization 138

temporary directories 137
terminal connection of scripts 174
terminal control for batch jobs 204
terminal I/O for batch jobs 204
terminate job method 77

tight PE integration 152
time value syntax 193
time zone 189
TMP 189
TMPDIR 189
trace output

debug mode 160
TRANSFER 153, 198
transfer 167
transfer queue 153, 198

transfer_down
gstat queue status output 154
transfer_queue
QS configuration file entry 154
trusted hosts 119
setting up 57
-tsm qconf option 127
tty
-s option 54
type
of queue for checkpointing 143
queue configuration entry 198

TZ 189
time zone 188

U

unix_behavior 186
unprivileged account 46
unsuspend

force 234

permission 234, 237

queue wih qmod 236

unsuspend a queue
permission to 121
unsuspend queues 233
unsuspended queue 109
update qmon 234
-us gmod option 231, 237
usage information 140
usage within qmake 208

used/free
gstat column 228

USER 139, 189

user 39,117
categories 117, 162
user access list 167
add 124
delete 124
show 124

user access lists
show all 124

user access lists for PE 146
user access permissions 171

user defined complex
load parameters 113

user hold 178

user id
equivalent 42

user interface
command line 19
user level checkpointing 140, 211
user sort 125
user_lists 167,172
user_sort 128, 199
user-ids
identical 137
userset 39
utilization 139

v

-V gsub option for parallel job 198
-v qsub option for parallel job 198
variables
environment 188
-verbose
qrsh option 205
Verify 182
Verify flag 218
verify job 182
verify job consistency 218
vi editor 67, 68, 87, 144, 149
virtual_free 103
load parameter 104

Index 455

w
W
warning messages 158
-w option to qalter 126
Warning 182
warning messages 158
Why 218
working directory
temporary 137
workload information 171

X
XAPPLRESDIR 237
xrdb 139, 237

xterm 70, 201
for interactive jobs 203

xuser_lists 167,172
x-windows
resources 138

Index 456 Sun Grid Engine ¢ July 2001

	Quick Start Guide
	Introduction
	Document Organization
	Sun Grid Engine Components and Concepts
	How Sun Grid Engine Operates
	A “Sun Grid Engine-Bank”
	Jobs and Queues - the Sun Grid Engine World

	Sun Grid Engine Components
	Hosts
	Daemons
	Queues
	Client Commands

	Quick Start Installation Guide
	Prerequisites
	Installation Accounts
	Creating the Installation Directory
	Adding a Service to the Services Database

	Reading the Distribution Media
	Installing a Default Sun Grid Engine System for your Cluster
	Installing the Master Host
	The Execution Host Installation

	The Default System Configuration

	Quick Start User‘s Guide
	Running a Simple Job
	Basic Use of the Graphical User‘s Interface qmon

	A Guide Through the Sun Grid Engine Manual Set
	The Sun Grid Engine Installation and Administration Guide
	The Sun Grid Engine User’s Guide
	The Sun Grid Engine Reference Manual

	Glossary of Sun Grid Engine Terms

	Installation and Administration Guide
	Introduction
	Installation
	Overview
	Phase 1 - Planning
	Phase 2 - Install the Software
	Phase 3 - Verify the Installation

	Planning
	Prerequisite Tasks
	The Installation Directory <codine_root>
	Spool Directories Under the Root Directory
	Directory Organization
	Disk Space Requirements
	Installation Accounts
	File Access Permissions
	Network Services
	Master Host
	Shadow Master Hosts
	Execution Hosts
	Administrative Hosts
	Submit Hosts
	Cells
	User Ids
	Queues

	Installation Plan
	Reading the Distribution Media
	Installing the Master Host
	Installing Execution Hosts
	Installing Administration and Submit Hosts
	Verifying the Installation

	Architectural Dependencies
	Master and Shadow Master Configuration
	Sun Grid Engine Daemons and Hosts
	Classification
	Configuring Hosts
	Administrative Hosts
	Submit Hosts
	Execution Hosts
	Monitoring Execution Hosts with qhost

	Killing and Restarting Daemons

	Cluster Configuration
	The Basic Cluster Configuration
	Displaying the Basic Cluster Configurations
	Modifying the Basic Cluster Configurations
	Displaying the Cluster Configuration with qmon
	Modifying global and Host Configurations with qmon

	Configuring Queues
	Configuring Queues with qmon
	Configuring General Parameters
	Configuring Execution Method Parameters
	Configuring Checkpointing Parameters
	Configuring Load and Suspend Thresholds
	Configuring Limits
	Configuring User Complexes
	Configuring Subordinate Queues
	Configuring User Access
	Configuring Owners

	Configuring Queues from the Command-line

	The Complexes Concept
	Complex Types
	The Queue Complex
	The Host Complex
	The Global Complex:
	User Defined Complexes

	Consumable Resources
	Setting Up Consumable Resources
	Examples
	Example 1: Floating Software License Management
	Example 2: Space Sharing for Virtual Memory
	Example 3: Managing Available Disk Space

	Configuring Complexes

	Queue Calendars
	Configuration with qmon
	Command-line Configuration

	Load Parameters
	The Default Load Parameters
	Adding Site Specific Load Parameters
	How to Write Your Own Load Sensors

	Managing User Access
	Manager Accounts
	Configure Manager Accounts with qmon
	Configure Manager Accounts from the Command-line

	Operator Accounts
	Configure Operator Accounts with qmon
	Configure Operator Accounts from the Command-line

	Queue Owner Accounts
	User Access Permissions
	Configure User Access Lists with qmon
	Configure User Access from the Command-line

	Scheduling
	Overview
	Scheduling Strategies
	Queue sorting
	Job sorting

	What Happens in a Scheduler Interval
	Scheduler Monitoring

	Scheduler Configuration
	Default Scheduling
	Scheduling Alternatives
	Changing the Scheduling Algorithm
	Job Priorities
	Equal Share Sort
	Scaling System Load
	Select Queue by Sequence Number
	Restrict the Number of Jobs per User or Group

	Changing the Scheduler Configuration via qmon

	The Sun Grid Engine Path Aliasing Facility
	Configuring Default Requests
	Setting Up a Sun Grid Engine User
	Customizing qmon
	Gathering Accounting and Utilization Statistics
	Checkpointing Support
	Checkpointing Environments
	Configuring Checkpointing Environments with qmon
	Command-line Configuration of Checkpointing Environment.

	Support of Parallel Environments
	Parallel Environments
	Configuring PEs with qmon
	Configuring PEs from the Command-line
	The PE Start-up Procedure
	Termination of the PE
	Tight Integration of PEs and Sun Grid Engine

	The Sun Grid Engine Queuing System Interface (QSI)
	Motivation
	How Jobs for Another Queueing System are Processed
	The QSI Configuration File
	Setting Up QS Command Procedures
	An Example of a QSI file

	Monitoring QSI Daemons and Jobs

	Trouble Shooting
	Scheduler Monitoring
	Retrieving Error Reports
	Running Sun Grid Engine Programs in Debug Mode

	User’s Guide
	Introduction
	Sun Grid Engine User Types and Operations
	Navigating through the Sun Grid Engine System
	Overview on Host Functionality
	The Master Host
	Execution Hosts
	Administration Hosts
	Submit Hosts

	Queues and Queue Properties
	The Queue Control qmon Dialogue
	Show Properties with the qmon Object Browser
	Queue Information from the Command-line

	Requestable Attributes
	User Access Permissions
	Managers, Operators and Owners

	Submit Batch Jobs
	Shell Scripts
	Example Script File

	Submitting Sun Grid Engine Jobs
	Submitting jobs with qmon (Simple Example)
	Submitting jobs with qmon (Extended Example)
	Submitting Jobs with qmon (Advanced Example)
	Extensions to Regular Shell Scripts
	Submitting Jobs from the Command-line
	Default Requests
	Resource Requirement Definition

	How Sun Grid Engine Allocates Resources
	Array Jobs
	Parallel Jobs
	Submitting Jobs to Other Queueing Systems
	How Sun Grid Engine Jobs Are Scheduled
	Job Scheduling
	Job Priorities
	Equal-Share-Scheduling

	Queue Selection

	Submit Interactive Jobs
	Submit Interactive Jobs with qmon
	Submitting Interactive Jobs with qsh
	Submitting Interactive Jobs with qlogin

	Transparent Remote Execution
	Remote Execution with qrsh
	Qrsh Usage

	Transparent Job Distribution with qtcsh
	Qtcsh Usage

	Parallel Makefile Processing with qmake
	Qmake Usage

	Checkpointing Jobs
	User Level Checkpointing
	Kernel Level Checkpointing
	Migration of Checkpointing Jobs
	Composing a Checkpointing Job Script
	Submit/Monitor/Delete a Checkpointing Job
	Submit a Checkpointing Job with qmon
	File System Requirements

	Monitoring and Controlling Sun Grid Engine Jobs
	Monitoring and Controlling Jobs with qmon
	Additional Information with the qmon Object Browser
	Monitoring with qstat
	Monitoring by Electronic Mail
	Controlling Sun Grid Engine Jobs from the Command-line

	Job Dependencies
	Controlling Queues
	Controlling Queues with qmon
	Controlling Queues with qmod

	Customizing qmon

	Reference Manual
	Introduction
	Typographic Conventions
	SGE_INTRO(1)
	SGE_CKPT(1)
	QACCT(1)
	QCONF(1)
	QDEL(1)
	QHOLD(1)
	QHOST(1)
	QMAKE(1)
	QMOD(1)
	QMON(1)
	QRLS(1)
	QSELECT(1)
	QSTAT(1)
	QTCSH(1)
	SUBMIT(1)
	ACCESS_LIST(5)
	ACCOUNTING(5)
	CALENDAR_CONF(5)
	CHECKPOINT(5)
	COD_REQUEST(5)
	CODINE_ALIASES(5)
	SGE_CONF(5)
	SGE_H_ALIASES(5)
	SGE_PE(5)
	COMPLEX(5)
	HOST_CONF(5)
	PROJECT(5)
	QSI_CONF(5)
	QTASK(5)
	QUEUE_CONF(5)
	SCHED_CONF(5)
	SHARE_TREE(5)
	USER(5)
	COD_COMMD(8)
	COD_EXECD(8)
	COD_QMASTER(8)
	COD_QSTD(8)
	COD_SCHEDD(8)
	COD_SHADOWD(8)
	COD_SHEPHERD(8)
	CODCOMMDCNTL(8)

